SLVS857B December   2009  – January 2015 DRV8808

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Setup Mode, Extended Setup Mode, Power-Down Mode
        1. 7.3.1.1 Operation Setup Register Bit Assignment
        2. 7.3.1.2 Operation Extended Setup Register Bit Assignment
        3. 7.3.1.3 Deep Sleep Mode
        4. 7.3.1.4 DC Motor Drive
        5. 7.3.1.5 Short/Open for Motor Outputs
        6. 7.3.1.6 Charge Pump
        7. 7.3.1.7 DC-DC Converters
        8. 7.3.1.8 nReset: Input for System Reset
        9. 7.3.1.9 VM Start-up/Power-Down and Glitch Condition
      2. 7.3.2 Blanking Time Insertion Timing for DC Motor Driving
      3. 7.3.3 Function Table in nORT, Power Down, VM Conditions
    4. 7.4 Device Functional Modes
      1. 7.4.1 Operation With 7 V < VM < 18 V
      2. 7.4.2 Operation With 18 V ≤ VM ≤ 38 V
    5. 7.5 Programming
      1. 7.5.1 Serial Interface
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Output Voltage for Each DC-DC Converter
        2. 8.2.2.2 Output Voltage Start Up Sequence
        3. 8.2.2.3 Other Parameters
        4. 8.2.2.4 Motor Configuration
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Trademarks
    2. 11.2 Electrostatic Discharge Caution
    3. 11.3 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

6 Specifications

6.1 Absolute Maximum Ratings(1)

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
VM Supply voltage 40 V
Logic input voltage, serial I/F, A_CONT, nReset, and so forth (2) –0.3 5.5 V
TH_OUT, nORT, LOGIC_OUT, CSELECT –0.3 3.6 V
nWAKEUP –0.3 8 V
Continuous total power dissipation (in case θJA = 20°C/W) 4 W
Continuous motor-drive output current for each H-bridge (100 ms) 2.5 A
Continuous DC-DC converter output current(3) 1.35 A
TJ Operating junction temperature (1 hour) 190 °C
Lead temperature 1.6 mm (1/16 in) from case for 10 s 260 °C
Tstg Storage temperature –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) The negative spike less than –5 V and narrower than 50-ns width should not cause any problem.
(3) May shut down due to regulator OCP.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

MIN NOM MAX UNIT
Supply voltage range, VM for motor control 18 27 38 V
Supply voltage range for DC-DC converter (VM) 7 27 38 V
Operating ambient temperature range –10 85 °C
Operating junction temperature range 0 135 °C

6.4 Thermal Information

THERMAL METRIC(1) DRV8808 UNIT
HTSSOP (DCA)
48 PINS
RθJA Junction-to-ambient thermal resistance 28.1 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 15.6
RθJB Junction-to-board thermal resistance 10.2
ψJT Junction-to-top characterization parameter 0.3
ψJB Junction-to-board characterization parameter 10.1
RθJC(bot) Junction-to-case (bottom) thermal resistance 0.9
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

TJ = 0°C to 135°C, VM = 7 V to 38 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SUPPLY (SLEEP) CURRENT
ISLEEP1 Supply (sleep) current 1 nSLEEP = L, DC-DC all off 3 5.5 mA
ISLEEP2 Supply (sleep) current 2 nSLEEP = L,
Regulators enabled
VM = 8 V,
No load
6 8 mA
ISLEEP3 Supply (sleep) current 3 nSLEEP = L,
Regulators enabled
VM = 38 V,
No load
6 8 mA
IDEEP_SL Supply (deep sleep) current(1) VM = 38 V 0.7 1 mA
DIGITAL INTERFACE CIRCUIT
VIH Digital high-level input voltage Digital inputs 2 3.6 V
IIH Digital high-level input current Digital inputs 100 μA
VIL Digital low-level input voltage Digital inputs 0.8 V
IIL Digital low-level input current Digital inputs 100 μA
Vhys Digital input hysteresis Digital inputs 0.45 V
Tdeg_nReset nReset input deglitch time 2.5 7.5 μs
Tfilt_ACONT A_CONT filter time(2) 30 70 μs
CHARGE-PUMP VCP (CP = 0.1 μF to 0.47 μF, Cblk = 0.01 μF ±20%)
VO(CP) Output voltage ILOAD = 0 mA, VM > 15 V VM + 10 VM + 13 V
f(CP) Switching frequency 1.6 MHz
tstart Start-up time CStorage = 0.1 μF, VM ≥ 15 V 0.5 2 ms
V3P3 OUTPUT
V3p3 Output voltage(3) 3 3.3 3.6 V
Cbypass Output capacitor 0.08 0.1 10 μF
INTERNAL CLOCK OSCI
fOSCi System clock rrequency 5.76 6.4 7.04 MHz
CSELECT FOR DC-DC STARTUP SELECTION
VCS0 DC-DC all off 0 0.3 V
VCS1 Turn ON ODB Pull down by external 200-kΩ resistor 1.3 2 V
VCS2 Turn ON ODB then ODC As pin open 3 3.6 V
VLDO REGULATOR(4)(5)(6)
VLDOIN LDO input voltage 3 3.6 V
VLDOFB Feedback voltage 1 V
VLDOOUT Output voltage range 1 V ≤ VLDOOUT ≤ 1.8 V ±5%
1.8 V ≤ VLDOOUT ≤ 2.5 V ±3%
IOUT Load capability 500 mA
IOCP OCP current 725 1100 mA
tIdeg OCP deglitch 3 8 13 μs
Vovp Overvoltage protection % to nominal Voutx detected at VFB
(VFB increasing)
25% 30% 35%
Vuvp Undervoltage protection % to nominal Voutx detected at VFB
(VFB decreasing)
–25% –30% –35%
tVdeg UVP/OVP deglitch time 3 8 13 μs
CL1 Load bypass configuration 1 Electrolytic load capacitance 27 120 μF
CESR1 ESR of load capacitance 0.05 2 Ω
CC1 Ceramic load capacitance 0 0.4 μF
CL2 Load bypass configuration 2 Electrolytic load capacitance 80 100 120 μF
CESR2 ESR of load capacitance 0.05 0.2 Ω
CC2 Ceramic load capacitance 0 3 μF
THREE DC-DC CONVERTER
VM OPE_X Operating supply voltage range ratio to VOUT IO < 0.6 A Vth VM- < VM < 7 V 0.8 x VM V
20 V < VM < 38 V 0.9 x VM
ODx Regulator output voltage 20 V < VM < 40 V 0℃ < TJ < 125℃ -3% VO 3%
125℃ < TJ < 135℃ -4% VO 4%
6.5 V < VM < 20 V -5% VO 5%
VM = 7 V, VO = 5.5 V -5% VO 5%
VM = 7 V, VO = 1 V 0℃ < TJ < 125℃ -3% VO 3%
125℃ < TJ < 135℃ -4% VO 4%
VthVM- < VM < 6.5 V , VO ≤ 3.3 V -5% VO 5%
FBx FBx pin voltage 1 V
IO ODx Output current (DC) VM > 15 V 1.35 A
IO ODx2 Output current (DC) at low VM VM = 7 V, VO = 5.5 V 0.6 A
IO ODx3 Output current (DC) at low VM VM = 7 V, VO = 3.3 V 1.2 A
RDSON(7) FET on-resistance at 0.8 A for OD_x VM > 15 V TJ = 70 °C 0.85 1.05 Ω
TJ = 135 °C 1 1.2
L Inductor VOUT = 1.0 V 150 μH
VOUT ≥ 3.3 V 330
C Capacitor VOUT = 1.0 V 270 330 μF
VOUT ≥ 3.3 V 220
THREE DC-DC CONVERTER PROTECTION
IO DD ODx Overcurrent detect for OD_x source Peak current in each ON cycle 1.35 2.7 A
tODXdeg Cycle by cycle Idetect deglitch 100 200 400 ns
tODXSD DC-DC shutdown filter Number of consecutive cycles with Idetect 4 chop cycles
Vovpx Overvoltage protection % to nominal Voutx detected at VFB
(VFB increasing)
25% 30% 35%
Vuvpx Undervoltage protection % to nominal Voutx detected at VFB
(VFB decreasing)
–25% –30% –35%
tVXdeg UVP/OVP deglitch time 3 8 13 μs
tsst Start-up time with soft start 56 ms
Vstover Start-up overshoot Ratio to Vo 3%
VM SUPERVISORY(8)(9)
VthVM– nORT, for VM low threshold VM decreasing 4.5 5 6 V
VthVM+ nORT, for VM high threshold VM increasing 5.5 6 6.79 V
VthVMh nORT, for VM detect hysteresis VthVM+ – VthVM– 0.5 1 V
VthVM2 For motor driver off(10) 15 V
tVMfilt Vth VM monitor filtering time For Vth VM detect 4 30 μs
tVM2filt Vth VM2 monitor filtering time For Vth VM2 detect 30 60 ms
THERMAL SHUTDOWN: TSD (11)(12)
TTSD Thermal shutdown set points 150 170 190 °C
tTSDdeg TSD deglitch time 30 60 90 μs
TEMPERATURE WARNING: PRE-TSD(13)(12)
PreTSD Temperature warning Assert at TH_OUT pin 115 135 155 °C
OPEN-DRAIN OUTPUTS (NORT, LOGIC_OUT, TH_OUT)
VOH High-state voltage RL = 1 kΩ to 3.3 V 3 V
VOL(15) Low-state voltage RL = 1 kΩ to 3.3 V 0.3 V
IOL(15) Low-state sink current Vo = 0.25 V 2 mA
tr(14) Rise time 10% to 90% 1 μs
tf(14) Fall time 90% to 10% 50 ns
NORT DELAY: STARTUP SEQUENCE (16)(17)
Tord1 nORT delay 1 Reset deassertion from VthVM+ < VM, for DC/DC wake up failing 200 300 390 ms
Tord3 DC-DC turn on delay From one DC-DC wake up to following DC-DC to go soft-start sequence 5 10 15 ms
Tord4 nORT delay 4 Reset deassertion from 2nd DC-DC wake up 60 120 180 ms
NRESET INPUT(16)
Treset nReset assertion to nORT assertion delay nReset falling to nORT failing 5 10 μs
H-BRIDGE DRIVERS (OUTX+ AND OUTX–) CONDITION: VM = 15 V to 38 V (18)
IOUT1(max) Peak output current 1 Less than 500-ns period 6.8 A
IOUT2(max) Peak output current 2 Less than 100-ms period 2.42 A
RDSON FET ON resistance at 0.8 A TJ = 70°C 0.55 0.65 Ω
TJ = 135°C 0.7 0.85
ICEX Output leakage current VOUTX = 0 V or 10 10 μA
IOC Motor Motor overcurrent threshold for each H-bridge (18) 3 8 A
Fchop Motor chopping frequency = FOSCM/8 90 100 110 kHz
DC MOTOR DRIVERS
tr Rise time VM = 35 V
20% to 80%
50 200 ns
tf Fall time VM = 35 V
20% to 80%
50 200 ns
tPDOFF Enable or strobe detection
to sink or source gate OFF delay
50 150 400 ns
tCOD Crossover delay time to prevent shoot through 100(27) 600 1000 ns
tPDON Enable or strobe detection
to sink or source gate ON delay
750 ns
tIdeg MISD BLANK [00](19) 1.80 2.25 2.95 μs
[01] (20) 1.20 1.50 2.30
[10] (21) 2.35 3.00 3.65
[11](22) 2.95 3.75 4.30
Tblank TBLANK [00] (23) 3.05 3.45 5.50 μs
[01] (24) 1.90 2.20 4.15
[10] (25) 4.15 4.70 6.75
[11](26) 5.30 5.95 8.25
VRSTRIP Internal current trip 00 1.18 1.4 1.62 A
01 1.48 1.7 1.92
10 1.68 1.9 2.12
11 1.98 2.2 2.42
External resistor sense voltage trip threshold 00 165 185 205 mV
01 190 210 230
10 240 260 280
11 290 310 330
Pminp Minimum pulse width (phase) (27) 1 μs
Pmine Minimum pulse width (enable) (27) 1 μs
SERIAL INTERFACE(28)
f(CLK) Clock frequency 25 MHz
twh(CLK) Minimum high-level pulse width 10 ns
twl(CLK) Minimum low-level pulse width 10 ns
tdcs Setup time, DATA to CLK↓ 10 ns
tdch Hold time, CLK↓ to DATA 10 ns
tdss Setup time, DATA to STROBE↑ 10 ns
tdsh Hold time, STROBE↑ to DATA 10 ns
tcss Setup time, CLK↓ to STROBE↑ 20(29) ns
tcsh Hold time, STROBE↑ to CLK↓ 20(29) ns
tnss Setup time, nSLEEP↓ to STROBE↑ 4(30) μs
tnsh Hold time, STROBE↑ to nSLEEP↑ 10 ns
tw(STRB) Minimum strobe pulse width 20 ns
SERIAL INTERFACE: ID MONITOR FUNCTION AT LOGIC_OUT PIN, EXTENDED SETUP MODE (31)
tODL 0 data output delay bit 3 to 0 (ext-setup) = (1100) From strobe rise to Logic_out
(1 kΩ to external 3.3 V)
4000 ns
tODH 1 data output delay bit 3 to 0 (ext-setup) = (1111) 4000 ns
(1) Deep Sleep shuts down majority of the device and runs minimal circuits (internal bias circuits and the nWAKEUP pin). Deep Sleep is entered by writing 1 to Setup Register, Bank 1, Bit 11. Device is restarted by pulling nWAKEUP pin low or power cycling VM. Deep Sleep functionality only available for VM > VthVM+.
(2) A_CONT is filtered for both high and low levels.
(3) V3p3 bypass pin is not meant to be used as a supply.
(4) LDO can be bypassed by either load configuration 1 or 2.
(5) Typical values for external components should be chosen such that when the tolerance is added to the typical, the values remain between the maximum and minimum specifications listed.
(6) When LDO is not used, recommend connecting VLDO_IN to GND, VLDO_OUT to GND, and VLDO_FB to FB_B.
(7) RDSON at T = 135°C guaranteed by characterization. Production test will be done at T = 25°C/70°C.
(8) VM must be VM > VthVM+ to start up internal DC-DC converter.
(9) When VM goes down below VthVM+, the VUVPx (undervoltage protection in DC-DC) are masked. The DC-DC converter is shut off by nORT assertion at VthVM –.
(10) No nORT assertion to VthVM2 detection.
(11) TSD does not need thermal hysteresis.
(12) Parametric guaranteed by characterization. Not tested in production.
(13) PreTSD does not need thermal hysteresis.
(14) tr and tf dominated by external capacitance, pullup resistance, and open-drain NMOS RDSON.
(15) Production test only measures Vol and Iol to ensure timing.
(16) This includes asynchronous timing deviation between the event to the timer clock.
(17) nORT assertion delay is configurable and defined in the serial register section.
(18) When the overcurrent is detected, all the H-bridges are shut down and assert nORT per shutdown configuration.
(19) 3 to 4 periods Fosc/4 + 1 Fosc
(20) 2 to 3 periods Fosc/4 + 1 Fosc
(21) 4 to 5 periods Fosc/4 + 1 Fosc
(22) 5 to 6 periods Fosc/4 + 1 Fosc
(23) 3 Fosc/8 (can add up to 1 additional Fosc/8 + 1.5 Fosc at phase or enable change due to asynchronous ambiguity)
(24) 2 Fosc/8 (can add up to 1 additional Fosc/8 + 1.5 Fosc at phase or enable change due to asynchronous ambiguity)
(25) 4 Fosc/8 (can add up to 1 additional Fosc/8 + 1.5 Fosc at phase or enable change due to asynchronous ambiguity)
(26) 5 Fosc/8 (can add up to 1 additional Fosc/8 + 1.5 Fosc at phase or enable change due to asynchronous ambiguity)
(27) tCOD, Pminp, and Pmine not production tested.
(28) Serial interface timing will not be tested parametrically in production.
(29) DATA value at STROBE is address bit for Setup and Extended Setup register so setup and hold times apply to DATA relative to STROBE. CLK and DATA also require setup and hold times relative to each other. Therefore, CLK and STROBE setup and hold timing is the summation of both.
(30) Internal filter on nSLEEP to STROBE drives this specification.
(31) Serial interface timing will not be tested parametrically in production.

6.6 Typical Characteristics

C001_SLVS857.png
Figure 3. Tsense (Analog Out) Temperate Coefficient: Voltage Plot Example (Typical)
C002_SLVS857.png
Figure 4. DC-DC Converter - DC Load Regulation Example (Typical)