SLUSDW9A June   2020  – June 2020 TPS51215A

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Typical Application
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Switch Mode Power Supply Control
      2. 7.3.2  VREF, V0, V1, V2, V3 and Output Voltage
      3. 7.3.3  Soft-Start and Power Good
      4. 7.3.4  SLEW and VID Function
      5. 7.3.5  MODE Pin Configuration
      6. 7.3.6  Light-Load Operation
      7. 7.3.7  Out-of-Bound Operation
      8. 7.3.8  Current Sensing and Overcurrent Protection
      9. 7.3.9  Overvoltage and Undervoltage Protection
      10. 7.3.10 V5IN Undervoltage Lockout Protection
      11. 7.3.11 Thermal Shutdown
    4. 7.4 D-CAP2 Control Mode
  8. Application and Implementation
    1. 8.1 Application Information
  9. Typical Applications
    1. 9.1 Design Requirements
    2. 9.2 Detailed Design Procedure
      1. 9.2.1 Step One: Determine the Specifications
      2. 9.2.2 Step Two: Determine System Parameters
      3. 9.2.3 Step Three: Determine Inductor Value and Choose Inductor
      4. 9.2.4 Step Four: Set the Output Voltages
      5. 9.2.5 Step Five: Calculate SLEW Capacitance
      6. 9.2.6 Step Six
      7. 9.2.7 Step Seven: Determine the Output Capacitance
      8. 9.2.8 Step Eight: Select Decoupling and Peripheral Components
    3. 9.3 Application Examples
      1. 9.3.1 Design 1: 2-Bit VID ICC(max) = 30 A, DCAP2 600-kHz Application for VCCIN_AUX in Intel TigerLake platform
      2. 9.3.2 Design 2: 2-Bit VID, ICC(max) = 10 A, for VCCIO_1_2 in Intel RocketLake - S platform
    4. 9.4 Application Curves of Design 1
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Community Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information
    1. 13.1 Package Option Addendum
      1. 13.1.1 Packaging Information
      2. 13.1.2 Tape and Reel Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Step Five: Calculate SLEW Capacitance

SLEW can be used to program the soft-start time and voltage transition timing. During soft-start operation, the current source used to program the SLEW rate is 4.5 µA (nominal). During VID transition, the current source is switched to a higher current of 45 µA.

In this design example, the requirement is to complete VID_00 to VID_11 transition within 120 µs, calculate the SLEW capacitance based on Equation 8.

Equation 8. TPS51215A q_cslew_lusao8.gif

For VOUT = 1.8 V, the soft start timing based on CSLEW is 1.2 ms.

The slower slew rate is desired to minimize large inductor current perturbation during startup and voltage transition, thus reducing the possibility of acoustic noise.