JAJS194E January   2007  – June 2019 TPS40077

PRODUCTION DATA.  

  1. 特長
  2. アプリケーション
  3. 概要
    1.     Device Images
      1.      アプリケーション概略図
  4. 改訂履歴
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Electrical Characteristics
    5. 6.5 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Minimum Pulse Duration
      2. 7.3.2  Slew Rate Limit On VDD
      3. 7.3.3  Setting The Switching Frequency (Programming The Clock Oscillator)
      4. 7.3.4  Loop Compensation
      5. 7.3.5  Shutdown and Sequencing
      6. 7.3.6  Boost and LVBP Bypass Capacitance
      7. 7.3.7  Internal Regulators
      8. 7.3.8  Power Dissipation
      9. 7.3.9  Boost Diode
      10. 7.3.10 Synchronous Rectifier Control
    4. 7.4 Programming
      1. 7.4.1 Programming The Ramp Generator Circuit and UVLO
      2. 7.4.2 Programming Soft Start
      3. 7.4.3 Programming Short-Circuit Protection
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 Buck Regulator 8-V to 16-V Input, 1.8-V Output at 10 A
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Power Train Components
            1. 8.2.1.2.1.1  Output Inductor, LOUT
            2. 8.2.1.2.1.2  Output Capacitor, COUT, ELCO and MLCC
            3. 8.2.1.2.1.3  Input Capacitor, CIN ELCO and MLCC
            4. 8.2.1.2.1.4  Switching MOSFET, QSW
            5. 8.2.1.2.1.5  Rectifier MOSFET, QSR
            6. 8.2.1.2.1.6  Timing Resistor, RT
            7. 8.2.1.2.1.7  Feed-Forward and UVLO Resistor, RKFF
            8. 8.2.1.2.1.8  Soft-Start Capacitor, CSS
            9. 8.2.1.2.1.9  Short-Circuit Protection, RILIM and CILIM
            10. 8.2.1.2.1.10 Boost Voltage, CBOOST and DBOOST (Optional)
            11. 8.2.1.2.1.11 Closing the Feedback Loop, RZ1, RP1, RPZ2, RSET1, RSET2, CZ2, CP2, and CPZ1
        3. 8.2.1.3 Application Curves
    3. 8.3 Additional System Examples
  9. Layout
    1. 9.1 Layout Guidelines
  10. 10デバイスおよびドキュメントのサポート
    1. 10.1 デバイス・サポート
      1. 10.1.1 デベロッパー・ネットワークの製品に関する免責事項
    2. 10.2 ドキュメントのサポート
      1. 10.2.1 関連資料
    3. 10.3 ドキュメントの更新通知を受け取る方法
    4. 10.4 コミュニティ・リソース
    5. 10.5 商標
    6. 10.6 静電気放電に関する注意事項
    7. 10.7 Glossary
  11. 11メカニカル、パッケージ、および注文情報

Output Capacitor, COUT, ELCO and MLCC

Several parameters must be considered when selecting the output capacitor. The capacitance value should be selected based on the output overshoot, VOVER, and undershoot, VUNDER, during a transient load, ISTEP, on the converter. The equivalent series resistance (ESR) is chosen to allow the converter to meet the output ripple specification, VRIPPLE. The voltage rating must be greater than the maximum output voltage. Another parameter to consider is equivalent series inductance, which is important in fast-transient load situations. Also, size and technology can be factors when choosing the output capacitor. In this design, a large-capacitance electrolytic type capacitor, COUT ELCO, is used to meet the overshoot and undershoot specifications. Its ESR is chosen to meet the output ripple specification. Smaller multiple-layer ceramic capacitors, COUT MLCC, are used to filter high-frequency noise.

The minimum required capacitance and maximum ESR can be calculated using Equation 21, Equation 22, and Equation 23.

Equation 21. TPS40077 q04_cout1_lus714.gif
Equation 22. TPS40077 q05_cout2_lus714.gif
Equation 23. TPS40077 q06_esr_lus714.gif

The capacitance for COUT should be greater than 444 μF, and its ESR should be less than 12 mΩ. The 470-μF/6.3-V capacitor from Panasonic's FC series was chosen. Its ESR is 160 mΩ. MLCCs of 47 μF and 22 μF/16 V are also added in parallel to achieve the required ESR and to reduce high-frequency noise.