SDAA132 December   2025 MSPM33C321A

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. MSPM33C Hardware Design Check List
  5. Power Supplies in MSPM33C Devices
    1. 2.1 Digital Power Supply
    2. 2.2 Analog Power Supply
    3. 2.3 Built-in Power Supply and Voltage Reference
    4. 2.4 Recommended Decoupling Circuit for Power Supply
    5. 2.5 Recommended Decoupling Circuit for VBAT
  6. Reset and Power Supply Supervisor
    1. 3.1 Digital Power Supply
    2. 3.2 Power Supply Supervisor
  7. Clock System
    1. 4.1 Internal Oscillators
    2. 4.2 External Oscillators
    3. 4.3 External Clock Output (CLK_OUT)
    4. 4.4 Frequency Clock Counter (FCC)
  8. Debugger
    1. 5.1 Debug Port Pins and Pinout
    2. 5.2 Debug Port Connection With Standard JTAG Connector
  9. Key Analog Peripherals
    1. 6.1 ADC Design Considerations
    2. 6.2 COMP Design Considerations
  10. Key Digital Peripherals
    1. 7.1 Timer Resources and Design Considerations
    2. 7.2 UART and LIN Resources and Design Considerations
    3. 7.3 MCAN Design Considerations
    4. 7.4 I2C and SPI Design Considerations
    5. 7.5 I2S/TDM Design Considerations
    6. 7.6 QSPI Design Considerations
  11. GPIOs
    1. 8.1 GPIO Output Switching Speed and Load Capacitance
    2. 8.2 GPIO Current Sink and Source
    3. 8.3 High-Speed GPIOs (HSIO)
    4. 8.4 High-Drive GPIOs (HDIO)
    5. 8.5 Communicate With a 1.8V Device Without a Level Shifter
    6. 8.6 Unused Pins Connection
  12. Layout Guides
    1. 9.1 Power Supply Layout
    2. 9.2 Considerations for Ground Layout
    3. 9.3 Traces, Vias, and Other PCB Components
    4. 9.4 How to Select Board Layers and Recommended Stack-up
  13. 10Bootloader
    1. 10.1 Bootloader Introduction
    2. 10.2 Bootloader Hardware Design Considerations
      1. 10.2.1 Physical Communication interfaces
      2. 10.2.2 Hardware Invocation
  14. 11Summary
  15. 12References

Power Supply Layout

Figure 9-1 shows the typical parts placement and routing for the power supply layout; the user must modify this appropriately for the MSPM33C part. Some of the MSPM33C parts have multiple VDD rails requiring a 100nF decoupling cap on each VDD pin but you can route them to share the same 10μF cap to reduce cost. You can optionally connect a filter inductor in series with the VCC and MCU VDD pins. This inductor is used to filter the switching noise frequency of DCDC. For the value, please refer to the data sheet of DCDC vendor. C1/C2/C3 values and layout in the MSPM33C device data sheets.

Note:
  • Keep the smallest capacitance, closest to the MCU VDD pin (C1 < C2 < C3).
  • Make all the traces direct without any vias.
 Suggested Power Supply Layout Figure 9-1 Suggested Power Supply Layout