SLAA534A June   2013  – June 2020

 

  1. Introduction
    1. 1.1  ABIs for the MSP430
    2. 1.2  Scope
    3. 1.3  ABI Variants
    4. 1.4  Toolchains and Interoperability
    5. 1.5  Libraries
    6. 1.6  Types of Object Files
    7. 1.7  Segments
    8. 1.8  MSP430 Architecture Overview
    9. 1.9  MSP430 Memory Models
    10. 1.10 Reference Documents
    11. 1.11 Code Fragment Notation
  2. Data Representation
    1. 2.1 Basic Types
    2. 2.2 Data in Registers
    3. 2.3 Data in Memory
    4. 2.4 Pointer Types
    5. 2.5 Complex Types
    6. 2.6 Structures and Unions
    7. 2.7 Arrays
    8. 2.8 Bit Fields
      1. 2.8.1 Volatile Bit Fields
    9. 2.9 Enumeration Types
  3. Calling Conventions
    1. 3.1 Call and Return
      1. 3.1.1 Call Instructions
        1. 3.1.1.1 Indirect Calls
        2. 3.1.1.2 Direct Calls
      2. 3.1.2 Return Instruction
      3. 3.1.3 Pipeline Conventions
      4. 3.1.4 Weak Functions
    2. 3.2 Register Conventions
      1. 3.2.1 Argument Registers
      2. 3.2.2 Callee-Saved Registers
    3. 3.3 Argument Passing
      1. 3.3.1 Register Singles
      2. 3.3.2 Register Pairs
      3. 3.3.3 Split Pairs
      4. 3.3.4 Quads (Four-Register Arguments)
      5. 3.3.5 Special Convention for Compiler Helper Functions
      6. 3.3.6 C++ Argument Passing
      7. 3.3.7 Passing Structs and Unions
      8. 3.3.8 Stack Layout of Arguments Not Passed in Registers
      9. 3.3.9 Frame Pointer
    4. 3.4 Return Values
    5. 3.5 Structures and Unions Passed and Returned by Reference
    6. 3.6 Conventions for Compiler Helper Functions
    7. 3.7 Scratch Registers for Functions Already Seen
    8. 3.8 _ _mspabi_func_epilog Helper Functions
    9. 3.9 Interrupt Functions
  4. Data Allocation and Addressing
    1. 4.1 Data Sections and Segments
    2. 4.2 Addressing Modes
    3. 4.3 Allocation and Addressing of Static Data
      1. 4.3.1 Addressing Methods for Static Data
        1. 4.3.1.1 Absolute Addressing
        2. 4.3.1.2 Symbolic Addressing
        3. 4.3.1.3 Immediate Addressing
      2. 4.3.2 Placement Conventions for Static Data
        1. 4.3.2.1 Abstract Conventions for Placement
        2. 4.3.2.2 Abstract Conventions for Addressing
      3. 4.3.3 Initialization of Static Data
    4. 4.4 Automatic Variables
    5. 4.5 Frame Layout
      1. 4.5.1 Stack Alignment
      2. 4.5.2 Register Save Order
    6. 4.6 Heap-Allocated Objects
  5. Code Allocation and Addressing
    1. 5.1 Computing the Address of a Code Label
      1. 5.1.1 Absolute Addressing for Code
      2. 5.1.2 Symbolic Addressing
      3. 5.1.3 Immediate Addressing
    2. 5.2 Branching
    3. 5.3 Calls
      1. 5.3.1 Direct Call
      2. 5.3.2 Far Call Trampoline
      3. 5.3.3 Indirect Calls
  6. Helper Function API
    1. 6.1 Floating-Point Behavior
    2. 6.2 C Helper Function API
    3. 6.3 Special Register Conventions for Helper Functions
    4. 6.4 Floating-Point Helper Functions for C99
  7. Standard C Library API
    1. 7.1  Reserved Symbols
    2. 7.2  <assert.h> Implementation
    3. 7.3  <complex.h> Implementation
    4. 7.4  <ctype.h> Implementation
    5. 7.5  <errno.h> Implementation
    6. 7.6  <float.h> Implementation
    7. 7.7  <inttypes.h> Implementation
    8. 7.8  <iso646.h> Implementation
    9. 7.9  <limits.h> Implementation
    10. 7.10 <locale.h> Implementation
    11. 7.11 <math.h> Implementation
    12. 7.12 <setjmp.h> Implementation
    13. 7.13 <signal.h> Implementation
    14. 7.14 <stdarg.h> Implementation
    15. 7.15 <stdbool.h> Implementation
    16. 7.16 <stddef.h> Implementation
    17. 7.17 <stdint.h> Implementation
    18. 7.18 <stdio.h> Implementation
    19. 7.19 <stdlib.h> Implementation
    20. 7.20 <string.h> Implementation
    21. 7.21 <tgmath.h> Implementation
    22. 7.22 <time.h> Implementation
    23. 7.23 <wchar.h> Implementation
    24. 7.24 <wctype.h> Implementation
  8. C++ ABI
    1. 8.1  Limits (GC++ABI 1.2)
    2. 8.2  Export Template (GC++ABI 1.4.2)
    3. 8.3  Data Layout (GC++ABI Chapter 2)
    4. 8.4  Initialization Guard Variables (GC++ABI 2.8)
    5. 8.5  Constructor Return Value (GC++ABI 3.1.5)
    6. 8.6  One-Time Construction API (GC++ABI 3.3.2)
    7. 8.7  Controlling Object Construction Order (GC++ ABI 3.3.4)
    8. 8.8  Demangler API (GC++ABI 3.4)
    9. 8.9  Static Data (GC++ ABI 5.2.2)
    10. 8.10 Virtual Tables and the Key function (GC++ABI 5.2.3)
    11. 8.11 Unwind Table Location (GC++ABI 5.3)
  9. Exception Handling
    1. 9.1  Overview
    2. 9.2  PREL31 Encoding
    3. 9.3  The Exception Index Table (EXIDX)
      1. 9.3.1 Pointer to Out-of-Line EXTAB Entry
      2. 9.3.2 EXIDX_CANTUNWIND
      3. 9.3.3 Inlined EXTAB Entry
    4. 9.4  The Exception Handling Instruction Table (EXTAB)
      1. 9.4.1 EXTAB Generic Model
      2. 9.4.2 EXTAB Compact Model
      3. 9.4.3 Personality Routines
    5. 9.5  Unwinding Instructions
      1. 9.5.1 Common Sequence
      2. 9.5.2 Byte-Encoded Unwinding Instructions
    6. 9.6  Descriptors
      1. 9.6.1 Encoding of Type Identifiers
      2. 9.6.2 Scope
      3. 9.6.3 Cleanup Descriptor
      4. 9.6.4 Catch Descriptor
      5. 9.6.5 Function Exception Specification (FESPEC) Descriptor
    7. 9.7  Special Sections
    8. 9.8  Interaction With Non-C++ Code
      1. 9.8.1 Automatic EXIDX Entry Generation
      2. 9.8.2 Hand-Coded Assembly Functions
    9. 9.9  Interaction With System Features
      1. 9.9.1 Shared Libraries
      2. 9.9.2 Overlays
      3. 9.9.3 Interrupts
    10. 9.10 Assembly Language Operators in the TI Toolchain
  10. 10DWARF
    1. 10.1 DWARF Register Names
    2. 10.2 Call Frame Information
    3. 10.3 Vendor Names
    4. 10.4 Vendor Extensions
  11. 11ELF Object Files (Processor Supplement)
    1. 11.1 Registered Vendor Names
    2. 11.2 ELF Header
    3. 11.3 Sections
      1. 11.3.1 Section Indexes
      2. 11.3.2 Section Types
      3. 11.3.3 Extended Section Header Attributes
      4. 11.3.4 Subsections
      5. 11.3.5 Special Sections
      6. 11.3.6 Section Alignment
    4. 11.4 Symbol Table
      1. 11.4.1 Symbol Types
      2. 11.4.2 Common Block Symbols
      3. 11.4.3 Symbol Names
      4. 11.4.4 Reserved Symbol Names
      5. 11.4.5 Mapping Symbols
    5. 11.5 Relocation
      1. 11.5.1 Relocation Types
        1. 11.5.1.1 Absolute Relocations
        2. 11.5.1.2 PC-Relative Relocations
        3. 11.5.1.3 Relocations in Data Sections
        4. 11.5.1.4 Relocations for MSP430 Instructions
        5. 11.5.1.5 Relocations for MSP430X Instructions
        6. 11.5.1.6 Other Relocation Types
      2. 11.5.2 Relocation Operations
      3. 11.5.3 Relocation of Unresolved Weak References
  12. 12ELF Program Loading and Linking (Processor Supplement)
    1. 12.1 Program Header
      1. 12.1.1 Base Address
      2. 12.1.2 Segment Contents
      3. 12.1.3 Thread-Local Storage
    2. 12.2 Program Loading
  13. 13Build Attributes
    1. 13.1 MSP430 ABI Build Attribute Subsection
    2. 13.2 MSP430 Build Attribute Tags
  14. 14Copy Tables and Variable Initialization
    1. 14.1 Copy Table Format
    2. 14.2 Compressed Data Formats
      1. 14.2.1 RLE
      2. 14.2.2 LZSS Format
    3. 14.3 Variable Initialization
  15. 15Revision History

Scope

Figure 1-1 shows the components of the ABI and their relationship. We will briefly describe the components, beginning with the lower part of the diagram and moving upward, and provide references to the appropriate chapter of this ABI specification.

The components in the bottom area relate to object-level interoperability.

GUID-24AA0EBA-CB81-45F4-A9D2-E7BF06254A3D-low.png Figure 1-1 Parts of the ABI Specification

The C Language ABI (Chapter 2, Chapter 3, Chapter 4, Chapter 5, Chapter 6 and Chapter 7) specifies function calling conventions, data type representations, addressing conventions, and the interface to the C run-time library.

The C++ ABI (Chapter 8) specifies how the C++ language is implemented; this includes details about virtual function tables, name mangling, how constructors are called, and the exception handling mechanism (Chapter 9). The MSP430 C++ ABI is based on the prevalent IA-64 (Itanium) C++ ABI.

The DWARF component (Chapter 10) specifies the representation of object-level debug information. The base standard is the DWARF3 standard. This specification details processor-specific extensions.

The ELF component (Chapter 11) specifies the representation of object files. This specification extends the System V ABI specification with processor specific information.

Build Attributes (Chapter 13) refer to a means of encoding into an object file various parameters that affect inter-object compatibility, such as target device assumptions, memory models, or ABI variants. Toolchains can use build attributes to prevent incompatible object files from being combined or loaded.

The components in the central area of the diagram relate to execution-time interoperability.

The components in the top part of Figure 1-1 augment the ABI with platform-specific conventions that define the requirements for executables to be compatible with an execution environment, such as the number and use of program segments, addressing conventions, visibility conventions, pre-emption, program loading, and initialization. Bare-Metal refers to the absence of any specific environment.

Finally, there is a set of specifications that are not formally part of the ABI but are documented here both for reference and so that other toolchains can optionally implement them.

Initialization (Chapter 14) refers to the mechanism whereby initialized variables obtain their initial value. Nominally these variables reside in the .data section and they are initialized directly when the .data section is loaded, requiring no additional participation from the tools. However the TI toolchain supports a mechanism whereby the .data section is encoded into the object file in compressed form, and decompressed at startup time. This is a special use of a general mechanism that programmatically copies compressed code or data from offline storage (e.g. ROM) to its execution address. We refer to this facility as copy tables. While not part of the ABI, the initialization and copy table mechanism is documented here so that other toolchains can support it if desired.