SLAU664B February   2016  – August 2017

 

  1.   MSP430FR2311 LaunchPad™ Development Kit (MSP‑EXP430FR2311)
    1.     Trademarks
    2. 1 Getting Started
      1. 1.1 Introduction
      2. 1.2 Key Features
      3. 1.3 What's Included
        1. 1.3.1 Kit Contents
        2. 1.3.2 Software Examples
      4. 1.4 First Steps: Out-of-Box Experience
        1. 1.4.1 Connecting to the Computer
        2. 1.4.2 Running the Out-of-Box Demo
      5. 1.5 Next Steps: Looking Into the Provided Code
    3. 2 Hardware
      1. 2.1 Block Diagram
      2. 2.2 Hardware Features
        1. 2.2.1 MSP430FR2311 MCU
        2. 2.2.2 eZ-FET Onboard Emulator With EnergyTrace™ Software
        3. 2.2.3 Emulator Connection: Isolation Jumper Block
        4. 2.2.4 Application (or "Backchannel") UART
        5. 2.2.5 Special Features
          1. 2.2.5.1 Smart Analog Combo (SAC)
      3. 2.3 Power
        1. 2.3.1 eZ-FET USB Power
        2. 2.3.2 BoosterPack Plug-In-Module and External Power Supply
      4. 2.4 Measure MSP430 MCU Current Draw
      5. 2.5 Clocking
      6. 2.6 Using the eZ-FET Emulator With a Different Target
      7. 2.7 BoosterPack Plug-in Module Pinout
      8. 2.8 Design Files
        1. 2.8.1 Hardware
        2. 2.8.2 Software
      9. 2.9 Hardware Change log
    4. 3 Software Examples
      1. 3.1 Out-of-Box Software Example
        1. 3.1.1 Source File Structure
        2. 3.1.2 Power Measurement
      2. 3.2 Blink LED Example
        1. 3.2.1 Source File Structure
      3. 3.3 Software I2C Example
        1. 3.3.1 Source File Structure
    5. 4 Resources
      1. 4.1 Integrated Development Environments
        1. 4.1.1 TI Cloud Development Tools
          1. 4.1.1.1 TI Resource Explorer Cloud
          2. 4.1.1.2 Code Composer Studio Cloud
        2. 4.1.2 Code Composer Studio IDE
        3. 4.1.3 IAR Embedded Workbench for Texas Instruments MSP430
        4. 4.1.4 Energia
      2. 4.2 LaunchPad Websites
      3. 4.3 MSPWare Software and TI Resource Explorer
      4. 4.4 FRAM Utilities
      5. 4.5 MSP430FR2311MCU
        1. 4.5.1 Device Documentation
        2. 4.5.2 MSP430FR2311 MCU Code Examples
        3. 4.5.3 MSP430 MCU Application Notes and TI Designs
      6. 4.6 Community Resources
        1. 4.6.1 TI E2E Online Community
        2. 4.6.2 Community-at-Large
    6. 5 FAQ
    7. 6 Schematics
  2.   Revision History

Using the eZ-FET Emulator With a Different Target

The eZ-FET emulator on the LaunchPad development kit can interface to most MSP430 MCU derivative devices, not just the onboard MSP430FR2311 MCU target device.

To do this, disconnect every jumper in the isolation jumper block. This is necessary, because the emulator cannot connect to more than one target at a time over the Spy-Bi-Wire (SBW) connection.

Next, make sure the target board has proper connections for SBW. Note that to be compatible with SBW, the capacitor on RST/SBWTDIO cannot be greater than 2.2 nF. The documentation for designing MSP430 MCU JTAG interface circuitry is the MSP430 Hardware Tools User's Guide.

Finally, wire together these signals from the emulator side of the isolation jumper block to the target hardware:

  • 5 V (if 5 V is needed)
  • 3.3 V
  • GND
  • SBWTDIO
  • SBWTCK
  • TXD (if the UART backchannel is to be used)
  • RXD (if the UART backchannel is to be used)

This wiring can be done either with jumper wires or by designing the board with a connector that plugs into the isolation jumper block.