SLAU678C March   2016  – November 2022

 

  1.   Abstract
  2.   Trademarks
  3. 1Getting Started
    1. 1.1 Introduction
    2. 1.2 Key Features
    3. 1.3 What's Included
      1. 1.3.1 Kit Contents
      2. 1.3.2 Software Examples
    4. 1.4 First Steps: Out-of-Box Experience
      1. 1.4.1 Connecting to the Computer
      2. 1.4.2 Running the Out-of-Box Demo
        1. 1.4.2.1 Live Temperature Mode
        2. 1.4.2.2 FRAM Data Log Mode
        3. 1.4.2.3 SD Card Data Log Mode
    5. 1.5 Next Steps: Looking Into the Provided Code
  4. 2Hardware
    1. 2.1 Block Diagram
    2. 2.2 Hardware Features
      1. 2.2.1 MSP430FR5994 MCU
      2. 2.2.2 eZ-FET Onboard Debug Probe With EnergyTrace++ Technology
      3. 2.2.3 Debug Probe Connection: Isolation Jumper Block
      4. 2.2.4 Application (or Backchannel) UART
      5. 2.2.5 Special Features
        1. 2.2.5.1 microSD Card
        2. 2.2.5.2 220-mF Super Capacitor
    3. 2.3 Power
      1. 2.3.1 eZ-FET USB Power
      2. 2.3.2 BoosterPack Plug-in Module and External Power Supply
      3. 2.3.3 Super Cap (C1)
        1. 2.3.3.1 Charging the Super Cap
        2. 2.3.3.2 Using the Super Cap
        3. 2.3.3.3 Disabling the Super Cap
    4. 2.4 Measure MSP430 Current Draw
    5. 2.5 Clocking
    6. 2.6 Using the eZ-FET Debug Probe With a Different Target
    7. 2.7 BoosterPack Plug-in Module Pinout
    8. 2.8 Design Files
      1. 2.8.1 Hardware
      2. 2.8.2 Software
    9. 2.9 Hardware Change Log
  5. 3Software Examples
    1. 3.1 Out-of-Box Software Example
      1. 3.1.1 Source File Structure
      2. 3.1.2 Out-of-Box Demo GUI
      3. 3.1.3 Power Up and Idle
      4. 3.1.4 Live Temperature Mode
      5. 3.1.5 FRAM Log Mode
      6. 3.1.6 SD Card Log Mode
    2. 3.2 Blink LED Example
      1. 3.2.1 Source File Structure
    3. 3.3 BOOSTXL-AUDIO Audio Record and Playback Example
      1. 3.3.1 Source File Structure
      2. 3.3.2 Operation
    4. 3.4 Filtering and Signal Processing With LEA Reference Design Example
      1. 3.4.1 Source File Structure
      2. 3.4.2 Operation
    5. 3.5 Emulating EEPROM Reference Design Example
      1. 3.5.1 Source File Structure
      2. 3.5.2 Operation
  6. 4Resources
    1. 4.1 Integrated Development Environments
      1. 4.1.1 TI Cloud Development Tools
        1. 4.1.1.1 TI Resource Explorer Cloud
        2. 4.1.1.2 Code Composer Studio Cloud
      2. 4.1.2 Code Composer Studio™ IDE
      3. 4.1.3 IAR Embedded Workbench for MSP430
    2. 4.2 LaunchPad Websites
    3. 4.3 MSPWare and TI Resource Explorer
    4. 4.4 FRAM Utilities
      1. 4.4.1 Compute Through Power Loss (CTPL)
    5. 4.5 MSP430FR5994 MCU
      1. 4.5.1 Device Documentation
      2. 4.5.2 MSP430FR5994 Code Examples
      3. 4.5.3 MSP430 Application Notes and TI Reference Designs
    6. 4.6 Community Resources
      1. 4.6.1 TI E2E Support Forums
      2. 4.6.2 Community at Large
  7. 5FAQ
  8. 6Schematics
  9. 7Revision History

Using the Super Cap

After charging of the super cap, move the J8 jumper to the Use setting and unplug power. This connects the super cap to the 3V3 rail without the charging resistor. Now, the LaunchPad development kit is being powered completely by the C1 super capacitor.

For the lowest-power operation, make sure to disconnect the J101 jumpers and remove the microSD card if it is not in use. Removing J101 jumpers prevents the super cap from powering the eZ-FET circuitry and consuming additional power. The microSD card has approximately 100 µA of current draw just being plugged into the system, even when not in use. Taking these steps allows your application to be powered longer from only the super cap.