SLAU929 April   2024 MSPM0C1104 , MSPM0G3505 , MSPM0G3506 , MSPM0G3507 , MSPM0L1105 , MSPM0L1304 , MSPM0L1305 , MSPM0L1306

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1MSPM0 Portfolio Overview
    1. 1.1 Introduction
    2. 1.2 Portfolio Comparison of Microchip AVR ATmega and ATiny MCUs to MSPM0
  5. 2Ecosystem and Migration
    1. 2.1 Software Ecosystem Comparison
      1. 2.1.1 MSPM0 Software Development Kit (MSPM0 SDK)
      2. 2.1.2 MPLAB X IDE vs Code Composer Studio IDE (CCS)
      3. 2.1.3 MPLAB Code Configurator vs SysConfig
    2. 2.2 Hardware Ecosystem
    3. 2.3 Debug Tools
    4. 2.4 Migration Process
    5. 2.5 Migration and Porting Example
  6. 3Core Architecture Comparison
    1. 3.1 CPU
    2. 3.2 Embedded Memory Comparison
      1. 3.2.1 Flash Features
      2. 3.2.2 Flash Organization
        1. 3.2.2.1 Memory Banks
        2. 3.2.2.2 Flash Memory Regions
        3. 3.2.2.3 NONMAIN Memory
      3. 3.2.3 Embedded SRAM
    3. 3.3 Power Up and Reset Summary and Comparison
    4. 3.4 Clocks Summary and Comparison
    5. 3.5 MSPM0 Operating Modes Summary and Comparison
      1. 3.5.1 Operating Modes Comparison
      2. 3.5.2 MSPM0 Capabilities in Lower Power Modes
      3. 3.5.3 Entering Lower-Power Modes
    6. 3.6 Interrupt and Events Comparison
      1. 3.6.1 Interrupts and Exceptions
      2. 3.6.2 Event Handler and EXTI (Extended Interrupt and Event Controller)
    7. 3.7 Debug and Programming Comparison
      1. 3.7.1 Bootstrap Loader (BSL) Programming Options
  7. 4Digital Peripheral Comparison
    1. 4.1 General-Purpose I/O (GPIO, IOMUX)
    2. 4.2 Universal Asynchronous Receiver-Transmitter (UART)
    3. 4.3 Serial Peripheral Interface (SPI)
    4. 4.4 I2C
    5. 4.5 Timers (TIMGx, TIMAx)
    6. 4.6 Windowed Watchdog Timer (WWDT)
    7. 4.7 Real-Time Clock (RTC)
  8. 5Analog Peripheral Comparison
    1. 5.1 Analog-to-Digital Converter (ADC)
    2. 5.2 Comparator (COMP)
    3. 5.3 Digital-to-Analog Converter (DAC)
    4. 5.4 Operational Amplifier (OPA)
    5. 5.5 Voltage References (VREF)
  9. 6References

Operational Amplifier (OPA)

The Microchip AVR family of devices do not offer an integrated Operational Amplifier (OPA) peripheral, but when migrating from AVR family to the MSPM0 family, you can make use of the MSPM0 internal OPAs to replace external discrete devices, or to buffer internal signals as necessary. The MSPM0 OPA modules are completely flexible, and can individually, or in combination, replace many discrete amplifiers in sensing or control applications. The primary features of the MSPM0 OPA modules are included in Table 5-5, and examples of common OPA configurations you can recreate are included in OPA code examples

Table 5-5 MSPM0 OPA Feature Set
Feature MSPM0 Implementation
Input type Rail to rail (can be enabled or disabled)
Gain bandwidth 1 MHz (low-power mode)
6 MHz (standard mode)
Amplifier configurations General-purpose mode
Buffer mode
PGA mode (inverting or noninverting)
Differential amplifier mode
Cascade amplifier mode
Input/output routing External pin routing
Internal connections to ADC and COMP modules
Fault detection Burnout current source (BCS)
Chopper stabilization Standard (selectable chopping frequency)
ADC assisted chop
Disabled
Reference voltages Internal VREF (MSPM0G devices only)
DAC12 (MSPM0G devices only)
DAC8 (devices with COMP module only)

OPA code examples

Information about OPA code examples can be found in the MSPM0 SDK examples guide.