SLLA628 September   2023 THVD1424

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Use Case Domain of RS-485
    1. 1.1 RS-485 Compliant Transmitter
    2. 1.2 RS-485 Compliant Receiver
    3. 1.3 RS-485 Transceiver Use Case Variability
  5. 2Traditional RS-485 Design Process
    1. 2.1 Design Process Overview
    2. 2.2 Requirement Definition
      1. 2.2.1 Bus Voltage and Logic Voltage (VCC and VIO):
      2. 2.2.2 Number of Communication Nodes Supported plus Static vs. Dynamic Systems
      3. 2.2.3 Max Bus Length, Network Topology, Emission Concerns, and Data Rate Required
      4. 2.2.4 Duplex
      5. 2.2.5 Protection Needs
      6. 2.2.6 Additional Features of RS-485 Bus
    3. 2.3 IC Selection, Application Design, and Validation/Qualification
  6. 3One Multi-System Design: Flexible RS-485 with the THVD1424
    1. 3.1 Flexible Multi-System Design
    2. 3.2 Simplification of RS-485 Design Process Using THVD1424
      1. 3.2.1 Bus Voltage and Logic Voltage Supplies (VCC and VIO)
      2. 3.2.2 Number of Communication Nodes Supported plus Dynamic or Static Systems
      3. 3.2.3 Max Bus Length, Network Topology, Data Rate, and Emissions Concerns
      4. 3.2.4 Duplex
      5. 3.2.5 Protection Needs
      6. 3.2.6 Additional Features
  7. 4Summary
  8. 5References

Use Case Domain of RS-485

The RS-485 standard defines a differential, bi-directional, and multipoint wired communication interface. The standard is published jointly by the Telecommunications Industry Association (TIA) and the Electronic Industries Alliance (EIA). It defines the electrical characteristics of the interface circuits, but does not define cabling, connectors, nor data protocol(s) used.