SLLU364 may   2023 MCT8315A

 

  1.   1
  2.   Abstract
  3. 1Revision History
  4.   Trademarks
  5. 2Introduction
    1. 2.1 Hardware and GUI setup
      1. 2.1.1 Jumper Configuration
      2. 2.1.2 External Connections
      3. 2.1.3 Connecting to the GUI
        1. 2.1.3.1 Connect to computer
        2. 2.1.3.2 Connect to the GUI
        3. 2.1.3.3 Verify Hardware Connection
  6. 3Essential Controls
    1. 3.1 Recommended Default Values based on application
    2. 3.2 Device and Pin Configuration
      1. 3.2.1 Speed input mode
    3. 3.3 Algorithm configuration – Motor speed
      1. 3.3.1 Maximum motor electrical speed (Hz)
    4. 3.4 Control Configuration
      1. 3.4.1 Cycle by cycle current limit (ILIMIT)
    5. 3.5 Testing for successful startup into closed loop
    6. 3.6 Fault handling
      1. 3.6.1 Abnormal Speed [ABN_SPEED]
      2. 3.6.2 Loss of Sync [LOSS_OF_SYNC]
      3. 3.6.3 No Motor Fault [NO_MTR]
      4. 3.6.4 Cycle by cycle current limit [CBC_ILIMIT]
  7. 4Basic Controls
    1. 4.1 Device and pin configuration
      1. 4.1.1 Power saver or sleep mode for battery operated applications
      2. 4.1.2 Direction and Brake pin override
    2. 4.2 System level configuration
      1. 4.2.1 Tracking motor speed feedback in real time
      2. 4.2.2 Monitoring power supply voltage fluctuations for normal motor operation
    3. 4.3 Control configurations
      1. 4.3.1  Initial speed detection of the motor for reliable motor resynchronization
      2. 4.3.2  Unidirectional motor drive detecting backward spin
      3. 4.3.3  Preventing back spin of rotor during startup
      4. 4.3.4  Faster startup timing
      5. 4.3.5  Improving speed regulation
      6. 4.3.6  Stopping motor quickly
      7. 4.3.7  Faster deceleration
      8. 4.3.8  Preventing supply voltage overshoot during motor stop and deceleration
      9. 4.3.9  Protecting against rotor lock or stall condition
      10. 4.3.10 Maximizing thermal efficiency and increasing thermal performance
      11. 4.3.11 Mitigating Electromagnetic Interference (EMI)
      12. 4.3.12 Improving Motor efficiency
      13. 4.3.13 Limiting and regulating supply power

Maximizing thermal efficiency and increasing thermal performance

Thermal performance can be improved by minimizing power dissipation. Power dissipation across RDS(on), Switching losses and operating supply current dissipation are the major sources of Power dissipation in MCT8315A. Power dissipation across RDS(on) is fixed as MOSFETs are integrated in MCT8315A. Please follow below recommendations to minimize switching losses and operating supply current dissipation.

Step 1: Increase Gate driver Slew rate [SLEW_RATE]

Please note that increasing Slew rate will increase EMI noise.

Step 2: Decrease PWM output frequency [PWM_FREQ_OUT]

Please note that decreasing PWM output frequency may lead to discontinuous phase current for very low inductance motors.

Step 3: Configure PWM modulation [PWM_MODUL] to Mixed modulation. In this modulation scheme, the switching losses among high and low side MOSFETs are evenly distributed.

Step 4: Enable ASR [EN_ASR] and AAR [EN_AAR] and configure PWM Mode [PWM_MODE] to Single ended mode.

Please note that enabling ASR when AAR is disabled might results in loss of Sync.