SPRUJA3 November   2024 F29H850TU , F29H859TU-Q1 , TMS320F28374D , TMS320F28375D , TMS320F28376D , TMS320F28377D , TMS320F28378D , TMS320F28379D

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Feature Differences Between F2837x, F2838x, F28P65x and F29H85x
    1. 1.1 F28x to F29x Feature Change Overview
  5. 2C29x Architecture
    1. 2.1 C29x Architecture Overview
      1. 2.1.1 Peripheral Interrupt Priority and Expansion (PIPE)
      2. 2.1.2 Safety and Security Module (SSU)
      3. 2.1.3 Real-Time DMA (RTDMA)
      4. 2.1.4 Lock-step Compare Module (LCM)
    2. 2.2 C28x vs C29x Architecture Overview
  6. 3PCB Design Consideration
    1. 3.1 VSSOSC
    2. 3.2 JTAG
    3. 3.3 VREF
  7. 4Feature Differences for System Consideration
    1. 4.1 New Features in F29H85x
      1. 4.1.1  Analog Subsystem
      2. 4.1.2  Data Logger and Trace (DLT)
      3. 4.1.3  Single Edge Nibble Transmission (SENT)
      4. 4.1.4  Waveform Analyzer Diagnostic (WADI)
      5. 4.1.5  EPWM
      6. 4.1.6  Bootrom
      7. 4.1.7  ERAD
      8. 4.1.8  XBAR
      9. 4.1.9  Error Signaling Module (ESM)
      10. 4.1.10 Error Aggregator
      11. 4.1.11 Hardware Security Module (HSM)
        1. 4.1.11.1 Cryptographic Accelerators
      12. 4.1.12 Safe Interconnect End-to-End (E2E) Safing
      13. 4.1.13 Critical MMR Safing With Parity
      14. 4.1.14 LPOST
    2. 4.2 Communication Module Changes
    3. 4.3 Control Module Changes
    4. 4.4 Analog Module Differences
    5. 4.5 Power Management
      1. 4.5.1 VREGENZ
      2. 4.5.2 Power Consumption
    6. 4.6 Memory Module Changes
    7. 4.7 GPIO Multiplexing Changes
  8. 5Software Development with F29H85x
    1. 5.1 Migration Report Generation Tool
  9. 6References

ERAD

C29 Embedded Real-time analysis and Diagnostics (ERAD) block is mainly comprised of two major blocks to aid with debug and system analysis capabilities. This is primarily tied to the C29 CPU and these capabilities can be used either with the debugger connected or as part of real-time application too. The two main components are the enhanced bus comparator (EBC) and the system event counter block (SEC), with an optional PC trace module.

ERAD can generate hardware breakpoints, watch points, interrupts or just a trigger output to be used by other resources like profiling counters and configurable logic block (CLB).

ERAD can be used for various types of system scenarios like counting of system events (like interrupts, critical system events and so forth), measuring minimum and maximum time taken between a pair of events measured over multiple iterations, and so forth.

Program Counter trace block helps keep track of PC discontinuity/jumps, which can in turn help track the complete sequence of software that got executed at any given point of time.