SCASE61 January   2025 SN54SC8T574-SEP

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Switching Characteristics
    7. 5.7 Timing Characteristics
    8. 5.8 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Feature Description
      1. 7.2.1 Balanced CMOS 3-State Outputs
      2. 7.2.2 SCxT Enhanced Input Voltage
        1. 7.2.2.1 Up Translation
        2. 7.2.2.2 Down Translation
      3. 7.2.3 Clamp Diode Structure
    3. 7.3 Functional Block Diagram
    4. 7.4 Device Functional Modes
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
        1. 8.2.1.1 Power Considerations
        2. 8.2.1.2 Input Considerations
        3. 8.2.1.3 Output Considerations
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Down Translation

Signals can be translated down using the SN54SC8T574-SEP. The voltage applied at the VCC will determine the output voltage and the input thresholds as described in the Recommended Operating Conditions and Electrical Characteristics tables.

When connected to a high-impedance input, the output voltage will be approximately VCC in the HIGH state, and 0V in the LOW state. Ensure that the input signals in the HIGH state are between VIH(MIN) and 5.5V, and input signals in the LOW state are lower than VIL(MAX) as shown in Section 7.2.2.

For example, standard CMOS inputs for devices operating at 5.0V, 3.3V or 2.5V can be down-translated to match 1.8V CMOS signals when operating from 1.8V VCC. See SCxT Up and Down Translation Example.

Down Translation Combinations are as follows:

  • 1.8V VCC – Inputs from 2.5V, 3.3V, and 5.0V
  • 2.5V VCC – Inputs from 3.3V and 5.0V
  • 3.3V VCC – Inputs from 5.0V