SCDU025 May   2021 TMUX646

 

  1.   Trademarks
  2. 1Introduction
  3. 2Information About Cautions and Warnings
  4. 3Features of this EVM
  5. 4EVM Images
  6. 5EVM Setup
  7. 6PCB Layouts
  8. 7Schematics
  9. 8Bill of Materials
  10. 9Related Documentation

EVM Setup

The following instructions are for setting up the EVM:

  1. If you desire to use this EVM with all channels loaded, then solder down your chosen 0805 components to the channels you wish to test. Table 5-1 describes which loads correspond to what pin on the TMUX646.

    Table 5-1 Configurable Load Matrix
    Pin Name 0805 Resistor Pad ID (SE) 0805 Capacitor Pad ID (D) 0805 Resistor Pad ID (D)
    D1P R12 C4 R10
    D1N R11 C4 R10
    D2P R9 C3 R7
    D2N R8 C3 R7
    D3P R6 C2 R4
    D3N R5 C2 R4
    D4P R3 C1 R1
    D4N R2 C1 R1
    CLKP R14 C5 R13
    CLKN R15 C5 R13
    DA1P R21 C7 R19
    DA1N R20 C7 R19
    DA2P R24 C8 R22
    DA2N R23 C8 R22
    DA3P R27 C9 R25
    DA3N R26 C9 R25
    DA4P R30 C10 R28
    DA4N R29 C10 R28
    CLKAP R17 C6 R16
    CLKAN R18 C6 R16
    DB1P R36 C12 R34
    DB1N R35 C12 R34
    DB2P R39 C13 R37
    DB2N R38 C13 R37
    DB3P R42 C14 R40
    DB3N R41 C14 R40
    DB4P R45 C15 R43
    DB4N R44 C15 R43
    CLKBP R33 C11 R31
    CLKBN R32 C11 R31

  2. Power the board by attaching a 1.65 V – 5.5 V power supply, current limited to 25 mA, with the positive terminal attached to TP33 or TP34 at the top right of the board under the label U1 VDD. Attached the negative terminal to TP35 or TP36 at the top right of the board above the label GND. The TMUX646 is now powered. To power U2, attach the positive power terminal to TP39 or TP40. Figure 5-1 below shows the test points circled in red.
    GUID-20210423-CA0I-FQFL-DHHF-QNF9VVRVMMRX-low.png GUID-20210423-CA0I-TKJ2-RWLB-VWPWBDCXJN8D-low.png Figure 5-1 TMUX646EVM Power Connections for U1 and U2.. TMUX646EVM Power Connections for U1 and U2. Both IC pads share the same ground connection
  3. This EVM comes with shunts to connect the jumpers – The jumpers have three pins and are set up in the following way.

    Table 5-2 3-Pin Header: Signal to Pin Matrix
    Position 1 Position 2 Position 3
    GND Floating VDD

    With the EVM in the same orientation (as shown in Figure 4-1), the jumpers and their positions are oriented according to Table 5-3. All headers have their respective 2nd pin in the center with a pin above and pin below. This is the second position of the header.

    Table 5-3 Jumper ID to EVM Orientation Matrix
    Jumper ID IC ID Position 1 – (GND) Position 3 – (VDD)
    J1 – J16 U1 LEFT RIGHT
    J17 – J30 U1 RIGHT LEFT
    J31, J32 U1 RIGHT LEFT
    J33, J34 U2 BOTTOM TOP
  4. Next, please refer to Table 5-4 below to prepare the EN and SEL pins to configure the channels.

    Table 5-4 TMUX646EVM: Truth Table
    EN SEL Channels Selected
    1 x Device Disabled
    0 0 xP; xN <-> xAP; xAN Connected
    xP; xN <-> xBP; xBN Disconnected
    0 1 xP; xN <-> xBP; xBN Connected
    xP; xN <-> xAP; xAN Disconnected

    Please see Table 5-5 for jumper configurations on the SEL and EN pin.

    Table 5-5 TMUX646EVM Board Configuration – Control Signals
    Jumper ID Test Point ID IC – Pin Shunt Position 1 Shunt Position 2 Board Function
    J31 TP31 U1 – /OE 1 2 U1 Enabled
    3 2 U1 Disabled
    N/A N/A Floating; Attach External Enable Source
    J33 TP41 U2 – /OE 1 2 U2 Enabled
    3 2 U2 Disabled
    N/A N/A Floating; Attach External Enable Source
    J32 TP32 U1 – SEL 1 2 U1 – A Channel Connected
    3 2 U1 – B Channel Connected
    N/A N/A Floating; Attach External Select Source
    J34 TP42 U2 – SEL 1 2 U2 – A Channel Connected
    3 2 U2 – B Channel Connected
    N/A N/A Floating; Attach External Select Source

    The TMUX646 has 1.8 V compatible logic thresholds, where digital signal levels are compatible for a 1.8 V system, independent of supply voltage. Refer to Table 5-6 below for defined logic levels.

    Table 5-6 TMUX646EVM: Logic Levels
    Parameter Min Max
    Input High Voltage 1.4 V 5.5 V
    Input Low Voltage 0 V 0.5 V
  5. Next, configure the multiplexer’s channels based on Table 5-7.

    Table 5-7 TMUX646EVM Board Configuration – I/O Signals
    Jumper ID TP ID IC – Pin Shunt Position 1 Shunt Position 2 Board Function
    J1 TP1 U1 – D4P 3 2 IC Pin = VDD
    2 1 IC Pin = GND
    N/A N/A IC Pin = Float
    J2 TP2 U1 – D4N 3 2 IC Pin = VDD
    2 1 IC Pin = GND
    N/A N/A IC Pin = Float
    J3 TP3 U1 – D3P 3 2 IC Pin = VDD
    2 1 IC Pin = GND
    N/A N/A IC Pin = Float
    J4 TP4 U1 – D3N 3 2 IC Pin = VDD
    2 1 IC Pin = GND
    N/A N/A IC Pin = Float
    J5 TP5 U1 – D2P 3 2 IC Pin = VDD
    2 1 IC Pin = GND
    N/A N/A IC Pin = Float
    J6 TP6 U1 – D2N 3 2 IC Pin = VDD
    2 1 IC Pin = GND
    N/A N/A IC Pin = Float
    J7 TP7 U1 – D1P 3 2 IC Pin = VDD
    2 1 IC Pin = GND
    N/A N/A IC Pin = Float
    J8 TP8 U1 – D1N 3 2 IC Pin = VDD
    2 1 IC Pin = GND
    N/A N/A IC Pin = Float
    J9 TP9 U1 – CLKP 3 2 IC Pin = VDD
    2 1 IC Pin = GND
    N/A N/A IC Pin = Float
    J10 TP10 U1 – CLKN 3 2 IC Pin = VDD
    2 1 IC Pin = GND
    N/A N/A IC Pin = Float
    J11 TP11 U1 – CLKAP 3 2 IC Pin = VDD
    2 1 IC Pin = GND
    N/A N/A IC Pin = Float
    J12 TP12 U1 – CLKAN 3 2 IC Pin = VDD
    2 1 IC Pin = GND
    N/A N/A IC Pin = Float
    J13 TP13 U1 – DA1P 3 2 IC Pin = VDD
    2 1 IC Pin = GND
    N/A N/A IC Pin = Float
    J14 TP14 U1 – DA1N 3 2 IC Pin = VDD
    2 1 IC Pin = GND
    N/A N/A IC Pin = Float
    J15 TP15 U1 – DA2P 3 2 IC Pin = VDD
    2 1 IC Pin = GND
    N/A N/A IC Pin = Float
    J16 TP16 U1 – DA2N 3 2 IC Pin = VDD
    2 1 IC Pin = GND
    N/A N/A IC Pin = Float
    J17 TP17 U1 – DA3P 3 2 IC Pin = VDD
    2 1 IC Pin = GND
    N/A N/A IC Pin = Float
    J18 TP18 U1 – DA3N 3 2 IC Pin = VDD
    2 1 IC Pin = GND
    N/A N/A IC Pin = Float
    J19 TP19 U1 – DA4P 3 2 IC Pin = VDD
    2 1 IC Pin = GND
    N/A N/A IC Pin = Float
    J20 TP20 U1 – DA4N 3 2 IC Pin = VDD
    2 1 IC Pin = GND
    N/A N/A IC Pin = Float
    J21 TP21 U1 – CLKBP 3 2 IC Pin = VDD
    2 1 IC Pin = GND
    N/A N/A IC Pin = Float
    J22 TP22 U1 – CLKBN 3 2 IC Pin = VDD
    2 1 IC Pin = GND
    N/A N/A IC Pin = Float
    J23 TP23 U1 – DB1N 3 2 IC Pin = VDD
    2 1 IC Pin = GND
    N/A N/A IC Pin = Float
    J24 TP24 U1 – DB1P 3 2 IC Pin = VDD
    2 1 IC Pin = GND
    N/A N/A IC Pin = Float
    J25 TP25 U1 – DB2N 3 2 IC Pin = VDD
    2 1 IC Pin = GND
    N/A N/A IC Pin = Float
    J26 TP26 U1 – DB2P 3 2 IC Pin = VDD
    2 1 IC Pin = GND
    N/A N/A IC Pin = Float
    J27 TP27 U1 – DB3N 3 2 IC Pin = VDD
    2 1 IC Pin = GND
    N/A N/A IC Pin = Float
    J28 TP28 U1 – DB3P 3 2 IC Pin = VDD
    2 1 IC Pin = GND
    N/A N/A IC Pin = Float
    J29 TP29 U1 – DB4N 3 2 IC Pin = VDD
    2 1 IC Pin = GND
    N/A N/A IC Pin = Float
    J30 TP30 U1 – DB4P 3 2 IC Pin = VDD
    2 1 IC Pin = GND
    N/A N/A IC Pin = Float
    J35 N/A (SMA) U2 – CLKP N/A N/A N/A (SMA)
    J36 N/A (SMA) U2 – CLKN N/A N/A N/A (SMA)
    J37 N/A (SMA) U2 – CLKAP N/A N/A N/A (SMA)
    J38 N/A (SMA) U2 – CLKAN N/A N/A N/A (SMA)
    J39 N/A (SMA) U2 – CLKBP N/A N/A N/A (SMA)
    J40 N/A (SMA) U2 – CLKBN N/A N/A N/A (SMA)