SLAU132Y September   2004  – June 2021

 

  1.   Read This First
    1.     About This Manual
    2.     Notational Conventions
    3.     Related Documentation
    4.     Related Documentation From Texas Instruments
    5.     Trademarks
  2. 1Introduction to the Software Development Tools
    1. 1.1 Software Development Tools Overview
    2. 1.2 Compiler Interface
    3. 1.3 ANSI/ISO Standard
    4. 1.4 Output Files
    5. 1.5 Utilities
  3. 2Using the C/C++ Compiler
    1. 2.1  About the Compiler
    2. 2.2  Invoking the C/C++ Compiler
    3. 2.3  Changing the Compiler's Behavior with Options
      1. 2.3.1  Linker Options
      2. 2.3.2  Frequently Used Options
      3. 2.3.3  Miscellaneous Useful Options
      4. 2.3.4  Run-Time Model Options
      5. 2.3.5  Symbolic Debugging Options
      6. 2.3.6  Specifying Filenames
      7. 2.3.7  Changing How the Compiler Interprets Filenames
      8. 2.3.8  Changing How the Compiler Processes C Files
      9. 2.3.9  Changing How the Compiler Interprets and Names Extensions
      10. 2.3.10 Specifying Directories
      11. 2.3.11 Assembler Options
      12. 2.3.12 Deprecated Options
    4. 2.4  Controlling the Compiler Through Environment Variables
      1. 2.4.1 Setting Default Compiler Options (MSP430_C_OPTION)
      2. 2.4.2 Naming One or More Alternate Directories (MSP430_C_DIR)
    5. 2.5  Controlling the Preprocessor
      1. 2.5.1  Predefined Macro Names
      2. 2.5.2  The Search Path for #include Files
        1. 2.5.2.1 Adding a Directory to the #include File Search Path (--include_path Option)
      3. 2.5.3  Support for the #warning and #warn Directives
      4. 2.5.4  Generating a Preprocessed Listing File (--preproc_only Option)
      5. 2.5.5  Continuing Compilation After Preprocessing (--preproc_with_compile Option)
      6. 2.5.6  Generating a Preprocessed Listing File with Comments (--preproc_with_comment Option)
      7. 2.5.7  Generating Preprocessed Listing with Line-Control Details (--preproc_with_line Option)
      8. 2.5.8  Generating Preprocessed Output for a Make Utility (--preproc_dependency Option)
      9. 2.5.9  Generating a List of Files Included with #include (--preproc_includes Option)
      10. 2.5.10 Generating a List of Macros in a File (--preproc_macros Option)
    6. 2.6  Passing Arguments to main()
    7. 2.7  Understanding Diagnostic Messages
      1. 2.7.1 Controlling Diagnostic Messages
      2. 2.7.2 How You Can Use Diagnostic Suppression Options
    8. 2.8  Other Messages
    9. 2.9  Generating Cross-Reference Listing Information (--gen_cross_reference Option)
    10. 2.10 Generating a Raw Listing File (--gen_preprocessor_listing Option)
    11. 2.11 Using Inline Function Expansion
      1. 2.11.1 Inlining Intrinsic Operators
      2. 2.11.2 Inlining Restrictions
    12. 2.12 Using Interlist
    13. 2.13 Controlling Application Binary Interface
    14. 2.14 Enabling Entry Hook and Exit Hook Functions
  4. 3Optimizing Your Code
    1. 3.1  Invoking Optimization
    2. 3.2  Controlling Code Size Versus Speed
    3. 3.3  Performing File-Level Optimization (--opt_level=3 option)
      1. 3.3.1 Creating an Optimization Information File (--gen_opt_info Option)
    4. 3.4  Program-Level Optimization (--program_level_compile and --opt_level=3 options)
      1. 3.4.1 Controlling Program-Level Optimization (--call_assumptions Option)
      2. 3.4.2 Optimization Considerations When Mixing C/C++ and Assembly
    5. 3.5  Automatic Inline Expansion (--auto_inline Option)
    6. 3.6  Link-Time Optimization (--opt_level=4 Option)
      1. 3.6.1 Option Handling
      2. 3.6.2 Incompatible Types
    7. 3.7  Using Feedback Directed Optimization
      1. 3.7.1 Feedback Directed Optimization
        1. 3.7.1.1 Phase 1 -- Collect Program Profile Information
        2. 3.7.1.2 Phase 2 -- Use Application Profile Information for Optimization
        3. 3.7.1.3 Generating and Using Profile Information
        4. 3.7.1.4 Example Use of Feedback Directed Optimization
        5. 3.7.1.5 The .ppdata Section
        6. 3.7.1.6 Feedback Directed Optimization and Code Size Tune
        7. 3.7.1.7 Instrumented Program Execution Overhead
        8. 3.7.1.8 Invalid Profile Data
      2. 3.7.2 Profile Data Decoder
      3. 3.7.3 Feedback Directed Optimization API
      4. 3.7.4 Feedback Directed Optimization Summary
    8. 3.8  Using Profile Information to Analyze Code Coverage
      1. 3.8.1 Code Coverage
        1. 3.8.1.1 Phase1 -- Collect Program Profile Information
        2. 3.8.1.2 Phase 2 -- Generate Code Coverage Reports
      2. 3.8.2 Related Features and Capabilities
        1. 3.8.2.1 Path Profiler
        2. 3.8.2.2 Analysis Options
        3. 3.8.2.3 Environment Variables
    9. 3.9  Accessing Aliased Variables in Optimized Code
    10. 3.10 Use Caution With asm Statements in Optimized Code
    11. 3.11 Using the Interlist Feature With Optimization
    12. 3.12 Debugging Optimized Code
    13. 3.13 What Kind of Optimization Is Being Performed?
      1. 3.13.1  Cost-Based Register Allocation
      2. 3.13.2  Alias Disambiguation
      3. 3.13.3  Branch Optimizations and Control-Flow Simplification
      4. 3.13.4  Data Flow Optimizations
      5. 3.13.5  Expression Simplification
      6. 3.13.6  Inline Expansion of Functions
      7. 3.13.7  Function Symbol Aliasing
      8. 3.13.8  Induction Variables and Strength Reduction
      9. 3.13.9  Loop-Invariant Code Motion
      10. 3.13.10 Loop Rotation
      11. 3.13.11 Instruction Scheduling
      12. 3.13.12 Tail Merging
      13. 3.13.13 Integer Division With Constant Divisor
  5. 4Linking C/C++ Code
    1. 4.1 Invoking the Linker Through the Compiler (-z Option)
      1. 4.1.1 Invoking the Linker Separately
      2. 4.1.2 Invoking the Linker as Part of the Compile Step
      3. 4.1.3 Disabling the Linker (--compile_only Compiler Option)
    2. 4.2 Linker Code Optimizations
      1. 4.2.1 Conditional Linking
      2. 4.2.2 Generating Aggregate Data Subsections (--gen_data_subsections Compiler Option)
    3. 4.3 Controlling the Linking Process
      1. 4.3.1 Including the Run-Time-Support Library
        1. 4.3.1.1 Automatic Run-Time-Support Library Selection
          1. 4.3.1.1.1 Using the --issue_remarks Option
        2. 4.3.1.2 Manual Run-Time-Support Library Selection
        3. 4.3.1.3 Library Order for Searching for Symbols
      2. 4.3.2 Run-Time Initialization
      3. 4.3.3 Initialization by the Interrupt Vector
      4. 4.3.4 Initialization of the FRAM Memory Protection Unit
      5. 4.3.5 Initialization of Cinit and Watchdog Timer Hold
      6. 4.3.6 Global Object Constructors
      7. 4.3.7 Specifying the Type of Global Variable Initialization
      8. 4.3.8 Specifying Where to Allocate Sections in Memory
      9. 4.3.9 A Sample Linker Command File
  6. 5C/C++ Language Implementation
    1. 5.1  Characteristics of MSP430 C
      1. 5.1.1 Implementation-Defined Behavior
    2. 5.2  Characteristics of MSP430 C++
    3. 5.3  Using the ULP Advisor
    4. 5.4  Advice on Hardware Configuration
    5. 5.5  Data Types
      1. 5.5.1 Size of Enum Types
    6. 5.6  File Encodings and Character Sets
    7. 5.7  Keywords
      1. 5.7.1 The const Keyword
      2. 5.7.2 The __interrupt Keyword
      3. 5.7.3 The restrict Keyword
      4. 5.7.4 The volatile Keyword
    8. 5.8  C++ Exception Handling
    9. 5.9  Register Variables and Parameters
    10. 5.10 The __asm Statement
    11. 5.11 Pragma Directives
      1. 5.11.1  The BIS_IE1_INTERRUPT
      2. 5.11.2  The CALLS Pragma
      3. 5.11.3  The CHECK_ULP Pragma
      4. 5.11.4  The CODE_ALIGN Pragma
      5. 5.11.5  The CODE_SECTION Pragma
      6. 5.11.6  The DATA_ALIGN Pragma
      7. 5.11.7  The DATA_SECTION Pragma
        1. 5.11.7.1 Using the DATA_SECTION Pragma C Source File
        2. 5.11.7.2 Using the DATA_SECTION Pragma C++ Source File
        3. 5.11.7.3 Using the DATA_SECTION Pragma Assembly Source File
      8. 5.11.8  The Diagnostic Message Pragmas
      9. 5.11.9  The FORCEINLINE Pragma
      10. 5.11.10 The FORCEINLINE_RECURSIVE Pragma
      11. 5.11.11 The FUNC_ALWAYS_INLINE Pragma
      12. 5.11.12 The FUNC_CANNOT_INLINE Pragma
      13. 5.11.13 The FUNC_EXT_CALLED Pragma
      14. 5.11.14 The FUNC_IS_PURE Pragma
      15. 5.11.15 The FUNC_NEVER_RETURNS Pragma
      16. 5.11.16 The FUNC_NO_GLOBAL_ASG Pragma
      17. 5.11.17 The FUNC_NO_IND_ASG Pragma
      18. 5.11.18 The FUNCTION_OPTIONS Pragma
      19. 5.11.19 The INTERRUPT Pragma
      20. 5.11.20 The LOCATION Pragma
      21. 5.11.21 The MUST_ITERATE Pragma
        1. 5.11.21.1 The MUST_ITERATE Pragma Syntax
        2. 5.11.21.2 Using MUST_ITERATE to Expand Compiler Knowledge of Loops
      22. 5.11.22 The NOINIT and PERSISTENT Pragmas
      23. 5.11.23 The NOINLINE Pragma
      24. 5.11.24 The NO_HOOKS Pragma
      25. 5.11.25 The once Pragma
      26. 5.11.26 The pack Pragma
      27. 5.11.27 The PROB_ITERATE Pragma
      28. 5.11.28 The RESET_ULP Pragma
      29. 5.11.29 The RETAIN Pragma
      30. 5.11.30 The SET_CODE_SECTION and SET_DATA_SECTION Pragmas
      31. 5.11.31 The UNROLL Pragma
      32. 5.11.32 The vector Pragma
      33. 5.11.33 The WEAK Pragma
    12. 5.12 The _Pragma Operator
    13. 5.13 Application Binary Interface
    14. 5.14 Object File Symbol Naming Conventions (Linknames)
    15. 5.15 Changing the ANSI/ISO C/C++ Language Mode
      1. 5.15.1 C99 Support (--c99)
      2. 5.15.2 C11 Support (--c11)
      3. 5.15.3 Strict ANSI Mode and Relaxed ANSI Mode (--strict_ansi and --relaxed_ansi)
    16. 5.16 GNU and Clang Language Extensions
      1. 5.16.1 Extensions
      2. 5.16.2 Function Attributes
      3. 5.16.3 For Loop Attributes
      4. 5.16.4 Variable Attributes
      5. 5.16.5 Type Attributes
      6. 5.16.6 Built-In Functions
    17. 5.17 Compiler Limits
  7. 6Run-Time Environment
    1. 6.1  Memory Model
      1. 6.1.1 Code Memory Models
      2. 6.1.2 Data Memory Models
      3. 6.1.3 Support for Near Data
      4. 6.1.4 Sections
      5. 6.1.5 C/C++ Software Stack
      6. 6.1.6 Dynamic Memory Allocation
    2. 6.2  Object Representation
      1. 6.2.1 Data Type Storage
        1. 6.2.1.1 Pointer to Member Function Types
        2. 6.2.1.2 Structure and Array Alignment
        3. 6.2.1.3 Field/Structure Alignment
        4. 6.2.1.4 C Code Definition of var
      2. 6.2.2 Character String Constants
    3. 6.3  Register Conventions
    4. 6.4  Function Structure and Calling Conventions
      1. 6.4.1 How a Function Makes a Call
      2. 6.4.2 How a Called Function Responds
      3. 6.4.3 Accessing Arguments and Local Variables
    5. 6.5  Accessing Linker Symbols in C and C++
    6. 6.6  Interfacing C and C++ With Assembly Language
      1. 6.6.1 Using Assembly Language Modules With C/C++ Code
      2. 6.6.2 Accessing Assembly Language Functions From C/C++
        1. 6.6.2.1 Calling an Assembly Language Function From a C/C++ Program
        2. 6.6.2.2 Assembly Language Program Called by Section 1
        3.       227
      3. 6.6.3 Accessing Assembly Language Variables From C/C++
        1. 6.6.3.1 Accessing Assembly Language Global Variables
          1. 6.6.3.1.1 Assembly Language Variable Program
          2. 6.6.3.1.2 C Program to Access Assembly Language From Section 1
        2.       232
        3. 6.6.3.2 Accessing Assembly Language Constants
          1. 6.6.3.2.1 Accessing an Assembly Language Constant From C
          2. 6.6.3.2.2 Assembly Language Program for Section 1
          3.        236
      4. 6.6.4 Sharing C/C++ Header Files With Assembly Source
      5. 6.6.5 Using Inline Assembly Language
    7. 6.7  Interrupt Handling
      1. 6.7.1 Saving Registers During Interrupts
      2. 6.7.2 Using C/C++ Interrupt Routines
        1.       242
      3. 6.7.3 Using Assembly Language Interrupt Routines
      4. 6.7.4 Interrupt Vectors
      5. 6.7.5 Other Interrupt Information
    8. 6.8  Using Intrinsics to Access Assembly Language Statements
      1. 6.8.1 MSP430 Intrinsics
      2. 6.8.2 Floating Point Conversion Intrinsics
      3. 6.8.3 Deprecated Intrinsics
      4. 6.8.4 The __delay_cycle Intrinsic
      5. 6.8.5 The __never_executed Intrinsic
        1. 6.8.5.1 Using __never_executed With a Vector Generator
          1. 6.8.5.1.1 TBIV Vector Generator
          2.        254
        2. 6.8.5.2 Using __never_executed With General Switch Expressions
          1. 6.8.5.2.1 General Switch Statement
          2.        257
    9. 6.9  System Initialization
      1. 6.9.1 Boot Hook Functions for System Pre-Initialization
      2. 6.9.2 Run-Time Stack
      3. 6.9.3 Automatic Initialization of Variables
        1. 6.9.3.1 Zero Initializing Variables
        2. 6.9.3.2 Direct Initialization
        3. 6.9.3.3 Autoinitialization of Variables at Run Time
        4. 6.9.3.4 Autoinitialization Tables
          1. 6.9.3.4.1 Length Followed by Data Format
          2. 6.9.3.4.2 Zero Initialization Format
          3. 6.9.3.4.3 Run Length Encoded (RLE) Format
          4. 6.9.3.4.4 Lempel-Ziv-Storer-Szymanski Compression (LZSS) Format
        5. 6.9.3.5 Initialization of Variables at Load Time
        6. 6.9.3.6 Global Constructors
      4. 6.9.4 Initialization Tables
    10. 6.10 Compiling for 20-Bit MSP430X Devices
  8. 7Using Run-Time-Support Functions and Building Libraries
    1. 7.1 C and C++ Run-Time Support Libraries
      1. 7.1.1 Linking Code With the Object Library
      2. 7.1.2 Header Files
      3. 7.1.3 Modifying a Library Function
      4. 7.1.4 Support for String Handling
      5. 7.1.5 Minimal Support for Internationalization
      6. 7.1.6 Support for Time and Clock Functions
      7. 7.1.7 Allowable Number of Open Files
      8. 7.1.8 Nonstandard Header Files in the Source Tree
      9. 7.1.9 Library Naming Conventions
    2. 7.2 The C I/O Functions
      1. 7.2.1 High-Level I/O Functions
        1. 7.2.1.1 Formatting and the Format Conversion Buffer
      2. 7.2.2 Overview of Low-Level I/O Implementation
        1.       open
        2.       close
        3.       read
        4.       write
        5.       lseek
        6.       unlink
        7.       rename
      3. 7.2.3 Device-Driver Level I/O Functions
        1.       DEV_open
        2.       DEV_close
        3.       DEV_read
        4.       DEV_write
        5.       DEV_lseek
        6.       DEV_unlink
        7.       DEV_rename
      4. 7.2.4 Adding a User-Defined Device Driver for C I/O
        1. 7.2.4.1 Mapping Default Streams to Device
      5. 7.2.5 The device Prefix
        1.       add_device
        2.       308
        3. 7.2.5.1 Program for C I/O Device
    3. 7.3 Handling Reentrancy (_register_lock() and _register_unlock() Functions)
    4. 7.4 Library-Build Process
      1. 7.4.1 Required Non-Texas Instruments Software
      2. 7.4.2 Using the Library-Build Process
        1. 7.4.2.1 Automatic Standard Library Rebuilding by the Linker
        2. 7.4.2.2 Invoking mklib Manually
          1. 7.4.2.2.1 Building Standard Libraries
          2. 7.4.2.2.2 Shared or Read-Only Library Directory
          3. 7.4.2.2.3 Building Libraries With Custom Options
          4. 7.4.2.2.4 The mklib Program Option Summary
      3. 7.4.3 Extending mklib
        1. 7.4.3.1 Underlying Mechanism
        2. 7.4.3.2 Libraries From Other Vendors
  9. 8C++ Name Demangler
    1. 8.1 Invoking the C++ Name Demangler
    2. 8.2 Sample Usage of the C++ Name Demangler
  10.   A Glossary
    1.     A.1 Terminology
  11.   B Revision History
  12.   329
  13.   330

Changing the Compiler's Behavior with Options

Options control the operation of the compiler. This section provides a description of option conventions and an option summary table. It also provides detailed descriptions of the most frequently used options, including options used for type-checking and assembling.

For a help screen summary of the options, enter cl430 with no parameters on the command line.

The following apply to the compiler options:

  • There are typically two ways of specifying a given option. The "long form" uses a two hyphen prefix and is usually a more descriptive name. The "short form" uses a single hyphen prefix and a combination of letters and numbers that are not always intuitive.
  • Options are usually case sensitive.
  • Individual options cannot be combined.
  • An option with a parameter should be specified with an equal sign before the parameter to clearly associate the parameter with the option. For example, the option to undefine a constant can be expressed as --undefine=name. Likewise, the option to specify the maximum amount of optimization can be expressed as -O=3. You can also specify a parameter directly after certain options, for example -O3 is the same as -O=3. No space is allowed between the option and the optional parameter, so -O 3 is not accepted.
  • Files and options except the --run_linker option can occur in any order. The --run_linker option must follow all compiler options and precede any linker options.

You can define default options for the compiler by using the MSP430_C_OPTION environment variable. For a detailed description of the environment variable, see Section 3.5.1.

Table 3-8 through Table 3-29 summarize all options (including link options). Use the references in the tables for more complete descriptions of the options.

Table 2-1 Processor Options
Option Alias Effect Section
--silicon_version={msp|mspx} -v Selects the instruction set. Section 3.4.4
--code_model={small|large} Specifies the code memory model. Section 7.2.1
--data_model={small|large|
    restricted}
Specifies the data memory model. Section 7.2.2
--near_data={globals|none} Specifies what data must be near. Default is globals. Section 7.2.3
Table 2-2 Optimization Options(1)
Option Alias Effect Section
--opt_level=off Disables all optimization. Section 4.2
--opt_level=n -On Level 0 (-O0) optimizes register usage only (default if option not used) .
Level 1 (-O1) uses Level 0 optimizations and optimizes locally.
Level 2 (-O2) uses Level 1 optimizations and optimizes globally .
Level 3 (-O3) uses Level 2 optimizations and optimizes the file.
Level 4 (-O4) uses Level 3 optimizations and performs link-time optimization.
Section 4.2, Section 4.4, Section 4.7
--opt_for_speed[=n] -mf Controls the tradeoff between size and speed (0-5 range). If this option is specified without n, the default value is 4. If this option is not specified, the default setting is 1. Section 4.3
Note: Machine-specific options (see Table 3-14) can also affect optimization.
Table 2-3 Advanced Optimization Options(1)
Option Alias Effect Section
--align_for_power Aligns all functions and loops to 4-byte boundaries. Power savings can be achieved if a small function or loop aligns to the 32-bit buffer for fetching code from flash memory. Power savings is less significant for larger functions and loops. --
--auto_inline=[size] -oi Sets automatic inlining size (--opt_level=3 only). If size is not specified, the default is 1. Section 4.6
--call_assumptions=n -opn Level 0 (-op0) specifies that the module contains functions and variables that are called or modified from outside the source code provided to the compiler.
Level 1 (-op1) specifies that the module contains variables modified from outside the source code provided to the compiler but does not use functions called from outside the source code.
Level 2 (-op2) specifies that the module contains no functions or variables that are called or modified from outside the source code provided to the compiler (default).
Level 3 (-op3) specifies that the module contains functions that are called from outside the source code provided to the compiler but does not use variables modified from outside the source code.
Section 4.5.1
--disable_inlining Prevents any inlining from occurring. Section 3.12
--fp_mode={relaxed|strict} Enables or disables relaxed floating-point mode. Section 3.4.3
--fp_reassoc={on|off} Enables or disables the reassociation of floating-point arithmetic. Section 3.4.3
--gen_opt_info=n -onn Level 0 (-on0) disables the optimization information file.
Level 1 (-on2) produces an optimization information file.
Level 2 (-on2) produces a verbose optimization information file.
Section 4.4.1
--optimizer_interlist -os Interlists optimizer comments with assembly statements. Section 4.12
--program_level_compile -pm Combines source files to perform program-level optimization. Section 4.5
--aliased_variables -ma Assumes variables are aliased Section 4.10
Note: Machine-specific options (see Table 3-14) can also affect optimization.
Table 2-4 Debug Options
Option Alias Effect Section
--symdebug:dwarf -g Default behavior. Enables symbolic debugging. The generation of debug information does not impact optimization. Therefore, generating debug information is enabled by default. Section 3.4.5
Section 4.13
--symdebug:dwarf_version=2|3|4 Specifies the DWARF format version. Section 3.4.5
--symdebug:none Disables all symbolic debugging. Section 3.4.5
Section 4.13
--symdebug:skeletal (Deprecated; has no effect.)
Table 2-5 Include Options
Option Alias Effect Section
--include_path=directory -I Adds the specified directory to the #include search path. Section 3.6.2.1
--preinclude=filename Includes filename at the beginning of compilation. Section 3.4.3
Table 2-6 ULP Advisor Options
Option Alias Effect Section
--advice:power[={all|none|rulespec}] Enables checking the specified ULP Advisor rules. (Default is all.) Section 3.4.3
--advice:power_severity={error|
    warning|remark|suppress}
Sets the diagnostic severity for ULP Advisor rules. Section 3.4.3
Table 2-7 Hardware Configuration Advisor Options
Option Alias Effect Section
--advice:hw_config[={all|none| rulespec} Enables checking the device configuration settings. (Default is none if this option is not included on the command line. Default is all if this option is used, but with no value specified.) Section 3.4.3
Table 2-8 Control Options
Option Alias Effect Section
--compile_only -c Disables linking (negates --run_linker). Section 5.2.3
--help -h Prints (on the standard output device) a description of the options understood by the compiler. Section 3.4.2
--run_linker -z Causes the linker to be invoked from the compiler command line. Section 3.4.2
--skip_assembler -n Compiles C/C++ source file , producing an assembly language output file. The assembler is not run and no object file is produced. Section 3.4.2
Table 2-9 Language Options
Option Alias Effect Section
--c89 Processes C files according to the ISO C89 standard. Section 6.16
--c99 Processes C files according to the ISO C99 standard. Section 6.16
--c11 Processes C files according to the ISO C11 standard. Section 6.16
--c++14 Processes C++ files according to the ISO C++14 standard.
The --c++03 option has been deprecated.
Section 6.16
--cpp_default -fg Processes all source files with a C extension as C++ source files. Section 3.4.7
--enum_type={packed|unpacked} Choose whether to use compact integer types to store small enumerated types. Section 3.4.4
--exceptions Enables C++ exception handling. Section 6.9
--extern_c_can_throw Allow extern C functions to propagate exceptions. --
--float_operations_allowed
={none|all|32|64}
Restricts the types of floating point operations allowed. Section 3.4.3
--gen_cross_reference -px Generates a cross-reference listing file (.crl). Section 3.10
--pending_instantiations=# Specify the number of template instantiations that may be in progress at any given time. Use 0 to specify an unlimited number. Section 3.4.4
--plain_char={signed|unsigned} -mc Changes variables of type char from unsigned to signed. Default is unsigned. Section 3.4.4
--printf_support={nofloat|full|
minimal}
Enables support for smaller, limited versions of the printf function family (sprintf, fprintf, etc.) and the scanf function family (sscanf, fscanf, etc.) run-time-support functions. Section 3.4.3
--relaxed_ansi -pr Enables relaxed mode; ignores strict ISO violations. This is on by default. To disable this mode, use the --strict_ansi option. Section 6.16.3
--rtti -rtti Enables C++ run-time type information (RTTI). –-
--strict_ansi -ps Enables strict ANSI/ISO mode (for C/C++, not for K&R C). In this mode, language extensions that conflict with ANSI/ISO C/C++ are disabled. In strict ANSI/ISO mode, most ANSI/ISO violations are reported as errors. Violations that are considered discretionary may be reported as warnings instead. Section 6.16.3
Table 2-10 Parser Preprocessing Options
Option Alias Effect Section
--preproc_dependency[=filename] -ppd Performs preprocessing only, but instead of writing preprocessed output, writes a list of dependency lines suitable for input to a standard make utility. Section 3.6.8
--preproc_includes[=filename] -ppi Performs preprocessing only, but instead of writing preprocessed output, writes a list of files included with the #include directive. Section 3.6.9
--preproc_macros[=filename] -ppm Performs preprocessing only. Writes list of predefined and user-defined macros to a file with the same name as the input but with a .pp extension. Section 3.6.10
--preproc_only -ppo Performs preprocessing only. Writes preprocessed output to a file with the same name as the input but with a .pp extension. Section 3.6.4
--preproc_with_comment -ppc Performs preprocessing only. Writes preprocessed output, keeping the comments, to a file with the same name as the input but with a .pp extension. Section 3.6.6
--preproc_with_compile -ppa Continues compilation after preprocessing with any of the -pp<x> options that normally disable compilation. Section 3.6.5
--preproc_with_line -ppl Performs preprocessing only. Writes preprocessed output with line-control information (#line directives) to a file with the same name as the input but with a .pp extension. Section 3.6.7
Table 2-11 Predefined Macro Options
Option Alias Effect Section
--define=name[=def] -D Predefines name. Section 3.4.2
--undefine=name -U Undefines name. Section 3.4.2
Table 2-12 Diagnostic Message Options
Option Alias Effect Section
--compiler_revision Prints out the compiler release revision and exits. --
--diag_error=num -pdse Categorizes the diagnostic identified by num as an error. Section 3.8.1
--diag_remark=num -pdsr Categorizes the diagnostic identified by num as a remark. Section 3.8.1
--diag_suppress=num -pds Suppresses the diagnostic identified by num. Section 3.8.1
--diag_warning=num -pdsw Categorizes the diagnostic identified by num as a warning. Section 3.8.1
--diag_wrap={on|off} Wrap diagnostic messages (default is on). Note that this command-line option cannot be used within the Code Composer Studio IDE.
--display_error_number -pden Displays a diagnostic's identifiers along with its text. Note that this command-line option cannot be used within the Code Composer Studio IDE. Section 3.8.1
--emit_warnings_as_errors -pdew Treat warnings as errors. Section 3.8.1
--gen_func_info_listing Generate user information file (.aux). Section 3.4.2
--issue_remarks -pdr Issues remarks (non-serious warnings). Section 3.8.1
--no_warnings -pdw Suppresses diagnostic warnings (errors are still issued). Section 3.8.1
--quiet -q Suppresses progress messages (quiet). --
--set_error_limit=num -pdel Sets the error limit to num. The compiler abandons compiling after this number of errors. (The default is 100.) Section 3.8.1
--super_quiet -qq Super quiet mode. --
--tool_version -version Displays version number for each tool. --
--verbose Display banner and function progress information. --
--verbose_diagnostics -pdv Provides verbose diagnostic messages that display the original source with line-wrap. Note that this command-line option cannot be used within the Code Composer Studio IDE. Section 3.8.1
--write_diagnostics_file -pdf Generates a diagnostic message information file. Compiler only option. Note that this command-line option cannot be used within the Code Composer Studio IDE. Section 3.8.1
Table 2-13 Supplemental Information Options
Option Alias Effect Section
--gen_preprocessor_listing -pl Generates a raw listing file (.rl). Section 3.11
--section_sizes={on|off} Generates section size information, including sizes for sections containing executable code and constants, constant or initialized data (global and static variables), and uninitialized data. (Default is off if this option is not included on the command line. Default is on if this option is used with no value specified.) Section 3.8.1
Table 2-14 Run-Time Model Options
Option Alias Effect Section
--common={on|off} On by default. When on, uninitialized file scope variables are emitted as common symbols. When off, common symbols are not created. Section 3.4.4
--disable_interrupts_around_hw_mpy=off Setting this option to off leaves interrupts enabled during inlined hardware multiply operations. This option can only be used if all ISRs do not use multiplication or call other functions. Section 3.4.4
--gen_data_subsections={on|off} Place all aggregate data (arrays, structs, and unions) into subsections. This gives the linker more control over removing unused data during the final link step. See the link to the right for details about the default setting. Section 5.3.2
--global_register={r4|r5} Reserves register for use by user.
--large_memory_model -ml Uses a large memory model when compiling for the MSP430X. (Deprecated) Section 3.4.4
--ramfunc={on|off} If set to on, specifies that all functions should be placed in the .TI.ramfunc section, which is placed in RAM. Section 3.4.4
--silicon_errata={errata} Generates code to work around the specified silicon errata. The errata value may be CPU12, CPU13, CPU15, CPU18, CPU19, CPU21, CPU22, CPU23, or CPU40. See the corresponding device errata sheet for details.
--use_hw_mpy[={16|32|F5|none}] If --opt_for_speed is set to 1 or higher, replaces all references to the default integer/long multiply routine with the version of the multiply routine that uses the hardware multiplier support. Additionally, if --opt_for_speed is set to 4 or 5, hardware multiplication is inlined during code generation. Section 3.4.4
Table 2-15 Entry/Exit Hook Options
Option Alias Effect Section
--entry_hook[=name] Enables entry hooks. Section 3.15
--entry_parm={none|name|
address}
Specifies the parameters to the function to the --entry_hook option. Section 3.15
--exit_hook[=name] Enables exit hooks. Section 3.15
--exit_parm={none|name|address} Specifies the parameters to the function to the --exit_hook option. Section 3.15
--remove_hooks_when_inlining Removes entry/exit hooks for auto-inlined functions. Section 3.15
Table 2-16 Feedback Options
Option Alias Effect Section
--analyze=codecov Generate analysis info from profile data. Section 4.9.2.2
--analyze_only Only generate analysis. Section 4.9.2.2
--gen_profile_info Generates instrumentation code to collect profile information. Section 4.8.1.3
--use_profile_info=file1[, file2,...] Specifies the profile information file(s). Section 4.8.1.3
Table 2-17 Assembler Options
Option Alias Effect Section
--keep_asm -k Keeps the assembly language (.asm) file. Section 3.4.11
--asm_listing -al Generates an assembly listing file. Section 3.4.11
--c_src_interlist -ss Interlists C source and assembly statements. Section 3.13
Section 4.12
--src_interlist -s Interlists optimizer comments (if available) and assembly source statements; otherwise interlists C and assembly source statements. Section 3.4.2
--absolute_listing -aa Enables absolute listing. Section 3.4.11
--asm_define=name[=def] -ad Sets the name symbol. Section 3.4.11
--asm_dependency -apd Performs preprocessing; lists only assembly dependencies. Section 3.4.11
--asm_includes -api Performs preprocessing; lists only included #include files. Section 3.4.11
--asm_undefine=name -au Undefines the predefined constant name. Section 3.4.11
--asm_listing_cross_reference -ax Generates the cross-reference file. Section 3.4.11
--include_file=filename -ahi Includes the specified file for the assembly module. Section 3.4.11
Table 2-18 File Type Specifier Options
Option Alias Effect Section
--asm_file=filename -fa Identifies filename as an assembly source file regardless of its extension. By default, the compiler and assembler treat .asm files as assembly source files. Section 3.4.7
--c_file=filename -fc Identifies filename as a C source file regardless of its extension. By default, the compiler treats .c files as C source files. Section 3.4.7
--cpp_file=filename -fp Identifies filename as a C++ file, regardless of its extension. By default, the compiler treats .C, .cpp, .cc and .cxx files as a C++ files. Section 3.4.7
--obj_file=filename -fo Identifies filename as an object code file regardless of its extension. By default, the compiler and linker treat .obj files as object code files, including both *.c.obj and *.cpp.obj files. Section 3.4.7
Table 2-19 Directory Specifier Options
Option Alias Effect Section
--abs_directory=directory -fb Specifies an absolute listing file directory. By default, the compiler uses the object file directory. Section 3.4.10
--asm_directory=directory -fs Specifies an assembly file directory. By default, the compiler uses the current directory. Section 3.4.10
--list_directory=directory -ff Specifies an assembly listing file and cross-reference listing file directory By default, the compiler uses the object file directory. Section 3.4.10
--obj_directory=directory -fr Specifies an object file directory. By default, the compiler uses the current directory. Section 3.4.10
--output_file=filename -fe Specifies a compilation output file name; can override --obj_directory. Section 3.4.10
--pp_directory=dir Specifies a preprocessor file directory. By default, the compiler uses the current directory. Section 3.4.10
--temp_directory=directory -ft Specifies a temporary file directory. By default, the compiler uses the current directory. Section 3.4.10
Table 2-20 Default File Extensions Options
Option Alias Effect Section
--asm_extension=[.]extension -ea Sets a default extension for assembly source files. Section 3.4.9
--c_extension=[.]extension -ec Sets a default extension for C source files. Section 3.4.9
--cpp_extension=[.]extension -ep Sets a default extension for C++ source files. Section 3.4.9
--listing_extension=[.]extension -es Sets a default extension for listing files. Section 3.4.9
--obj_extension=[.]extension -eo Sets a default extension for object files. Section 3.4.9
Table 2-21 Command Files Options
Option Alias Effect Section
--cmd_file=filename -@ Interprets contents of a file as an extension to the command line. Multiple -@ instances can be used. Section 3.4.2