SLAU802 March   2019

 

  1.   MSP430FR2476 LaunchPad™ Development Kit (LP‑MSP430FR2476)
    1.     Trademarks
    2. 1 Getting Started
      1. 1.1 Introduction
      2. 1.2 Key Features
      3. 1.3 What’s Included
        1. 1.3.1 Kit Contents
        2. 1.3.2 Software Examples
      4. 1.4 First Steps: Out-of-Box Experience
        1. 1.4.1 Connecting to the Computer
        2. 1.4.2 Running the Out-of-Box Experience (OOBE)
      5. 1.5 Next Steps: Looking Into the Provided Code
    3. 2 Hardware
      1. 2.1 Block Diagram
      2. 2.2 Hardware Features
        1. 2.2.1 MSP430FR2476 MCU
        2. 2.2.2 eZ-FET Onboard Debug Probe With EnergyTrace™ Technology
        3. 2.2.3 Debug Probe Connection: Isolation Jumper Block
        4. 2.2.4 Application (or Backchannel) UART
        5. 2.2.5 Special Features
          1. 2.2.5.1 TMP235 Temperature Sensor
          2. 2.2.5.2 CR2032 Coin Cell Battery
      3. 2.3 Power
        1. 2.3.1 eZ-FET USB Power
        2. 2.3.2 CR2032 Battery Power
        3. 2.3.3 BoosterPack Plug-in Module and External Power Supply
      4. 2.4 Measure Current Draw of the MSP430 MCU
      5. 2.5 Clocking
      6. 2.6 Using the eZ-FET Debug Probe With a Different Target
      7. 2.7 BoosterPack Plug-in Module Pinout
      8. 2.8 Design Files
        1. 2.8.1 Hardware
        2. 2.8.2 Software
      9. 2.9 Hardware Change Log
    4. 3 Software Examples
      1. 3.1 Out-of-Box Software Example
        1. 3.1.1 Source File Structure
        2. 3.1.2 Overview
      2. 3.2 Blink LED Example
        1. 3.2.1 Source File Structure
    5. 4 Resources
      1. 4.1 Integrated Development Environments
        1. 4.1.1 TI Cloud Development Tools
          1. 4.1.1.1 TI Resource Explorer Cloud
          2. 4.1.1.2 Code Composer Studio Cloud
        2. 4.1.2 Code Composer Studio IDE
        3. 4.1.3 IAR Embedded Workbench for MSP430 IDE
      2. 4.2 LaunchPad Development Kit Websites
      3. 4.3 MSP430Ware and TI Resource Explorer
      4. 4.4 FRAM Utilities
        1. 4.4.1 Compute Through Power Loss
        2. 4.4.2 Nonvolatile Storage (NVS)
      5. 4.5 MSP430FR2476 MCU
        1. 4.5.1 Device Documentation
        2. 4.5.2 MSP430FR2476 Code Examples
        3. 4.5.3 MSP430 Application Notes and TI Designs
      6. 4.6 Community Resources
        1. 4.6.1 TI E2E Community
        2. 4.6.2 Community at Large
    6. 5 FAQ
    7. 6 Schematics

Introduction

The 16-MHz MSP430FR2476 MCU features 64KB of embedded ferroelectric random access memory (FRAM), a nonvolatile memory known for its ultra-low power, high endurance, and high speed write access. Combined with 8KB of on-chip RAM, users have access to 64KB of memory to split between their program and data as required. For example, a data logging application could require a large data memory with relatively small program memory, so the memory can be allocated as required between program and data memory.

Rapid prototyping is simplified by the 40-pin BoosterPack™ plug-in module headers, which support a wide range of available BoosterPack plug-in modules. You can quickly add features like wireless connectivity, graphical displays, environmental sensing, and much more. Design your own BoosterPack plug-in module or choose among many already available from TI and third-party developers.

Free software development tools are also available, such as TI’s Eclipse-based Code Composer Studio™ IDE (CCS) and IAR Embedded Workbench® IDE. Both of these IDEs support EnergyTrace™ technology for real-time power profiling and debugging when paired with the MSP430FR2476 LaunchPad development kit.