SLAU929 April   2024 MSPM0C1104 , MSPM0G3505 , MSPM0G3506 , MSPM0G3507 , MSPM0L1105 , MSPM0L1304 , MSPM0L1305 , MSPM0L1306

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1MSPM0 Portfolio Overview
    1. 1.1 Introduction
    2. 1.2 Portfolio Comparison of Microchip AVR ATmega and ATiny MCUs to MSPM0
  5. 2Ecosystem and Migration
    1. 2.1 Software Ecosystem Comparison
      1. 2.1.1 MSPM0 Software Development Kit (MSPM0 SDK)
      2. 2.1.2 MPLAB X IDE vs Code Composer Studio IDE (CCS)
      3. 2.1.3 MPLAB Code Configurator vs SysConfig
    2. 2.2 Hardware Ecosystem
    3. 2.3 Debug Tools
    4. 2.4 Migration Process
    5. 2.5 Migration and Porting Example
  6. 3Core Architecture Comparison
    1. 3.1 CPU
    2. 3.2 Embedded Memory Comparison
      1. 3.2.1 Flash Features
      2. 3.2.2 Flash Organization
        1. 3.2.2.1 Memory Banks
        2. 3.2.2.2 Flash Memory Regions
        3. 3.2.2.3 NONMAIN Memory
      3. 3.2.3 Embedded SRAM
    3. 3.3 Power Up and Reset Summary and Comparison
    4. 3.4 Clocks Summary and Comparison
    5. 3.5 MSPM0 Operating Modes Summary and Comparison
      1. 3.5.1 Operating Modes Comparison
      2. 3.5.2 MSPM0 Capabilities in Lower Power Modes
      3. 3.5.3 Entering Lower-Power Modes
    6. 3.6 Interrupt and Events Comparison
      1. 3.6.1 Interrupts and Exceptions
      2. 3.6.2 Event Handler and EXTI (Extended Interrupt and Event Controller)
    7. 3.7 Debug and Programming Comparison
      1. 3.7.1 Bootstrap Loader (BSL) Programming Options
  7. 4Digital Peripheral Comparison
    1. 4.1 General-Purpose I/O (GPIO, IOMUX)
    2. 4.2 Universal Asynchronous Receiver-Transmitter (UART)
    3. 4.3 Serial Peripheral Interface (SPI)
    4. 4.4 I2C
    5. 4.5 Timers (TIMGx, TIMAx)
    6. 4.6 Windowed Watchdog Timer (WWDT)
    7. 4.7 Real-Time Clock (RTC)
  8. 5Analog Peripheral Comparison
    1. 5.1 Analog-to-Digital Converter (ADC)
    2. 5.2 Comparator (COMP)
    3. 5.3 Digital-to-Analog Converter (DAC)
    4. 5.4 Operational Amplifier (OPA)
    5. 5.5 Voltage References (VREF)
  9. 6References

Debug and Programming Comparison

The Arm SWD 2-wire JTAG port is the main debug and programming interface for MSPM0, while the Microchip 8-bit AVR devices is a one-wire Unified Program and Debug Interface (UPDI) . This interface is typically used during application development, and during production programming. Table 3-12 compares the features between the two device families. For additional information about security features of the MSPM0 debug interface, see the Cybersecurity Enablers in MSPM0 MCUs.

Table 3-12 Program/Debug Interface Feature Comparison
MCHP MSPM0
Debug port Arm SWD port (2-wire) Arm SWD port (2-wire)
Break Point Unit (BPU) Two hardware breakpoints; unlimited user software breakpoints Four hardware breakpoints
Data Watch Unit (DWT) Two watchpoints Two watchpoints
Micro-Trace Buffer (MTB) No MTB support with 4 trace packets(1)
Low-power debug support No Yes
EnergyTrace support No EnergyTrace+ support (CPU states with power profiling)
Peripheral run support during debug Yes Yes
Debug interface locking No Can permanently disable debug capabilities, or can lock with password
MSPM0Gxxxx devices only