SLAZ092AB October   2012  – May 2021 CC430F5133

 

  1. 1Functional Advisories
  2. 2Preprogrammed Software Advisories
  3. 3Debug Only Advisories
  4. 4Fixed by Compiler Advisories
  5. 5Nomenclature, Package Symbolization, and Revision Identification
    1. 5.1 Device Nomenclature
    2. 5.2 Package Markings
      1.      RGZ48
    3. 5.3 Memory-Mapped Hardware Revision (TLV Structure)
  6. 6Advisory Descriptions
    1. 6.1  ADC24
    2. 6.2  ADC25
    3. 6.3  ADC27
    4. 6.4  ADC29
    5. 6.5  ADC42
    6. 6.6  ADC69
    7. 6.7  AES1
    8. 6.8  BSL7
    9. 6.9  COMP4
    10. 6.10 COMP10
    11. 6.11 CPU18
    12. 6.12 CPU20
    13. 6.13 CPU21
    14. 6.14 CPU22
    15. 6.15 CPU23
    16. 6.16 CPU24
    17. 6.17 CPU25
    18. 6.18 CPU26
    19. 6.19 CPU27
    20. 6.20 CPU28
    21. 6.21 CPU29
    22. 6.22 CPU30
    23. 6.23 CPU31
    24. 6.24 CPU32
    25. 6.25 CPU33
    26. 6.26 CPU34
    27. 6.27 CPU35
    28. 6.28 CPU39
    29. 6.29 CPU40
    30. 6.30 CPU46
    31. 6.31 CPU47
    32. 6.32 DMA4
    33. 6.33 DMA7
    34. 6.34 DMA8
    35. 6.35 DMA10
    36. 6.36 EEM8
    37. 6.37 EEM9
    38. 6.38 EEM11
    39. 6.39 EEM13
    40. 6.40 EEM14
    41. 6.41 EEM16
    42. 6.42 EEM17
    43. 6.43 EEM19
    44. 6.44 EEM23
    45. 6.45 FLASH29
    46. 6.46 FLASH31
    47. 6.47 FLASH37
    48. 6.48 JTAG20
    49. 6.49 JTAG26
    50. 6.50 JTAG27
    51. 6.51 MPY1
    52. 6.52 PMAP1
    53. 6.53 PMM8
    54. 6.54 PMM9
    55. 6.55 PMM10
    56. 6.56 PMM11
    57. 6.57 PMM12
    58. 6.58 PMM14
    59. 6.59 PMM15
    60. 6.60 PMM17
    61. 6.61 PMM18
    62. 6.62 PMM20
    63. 6.63 PORT15
    64. 6.64 PORT16
    65. 6.65 PORT17
    66. 6.66 PORT19
    67. 6.67 PORT21
    68. 6.68 RF1A1
    69. 6.69 RF1A2
    70. 6.70 RF1A3
    71. 6.71 RF1A5
    72. 6.72 RF1A6
    73. 6.73 RF1A8
    74. 6.74 RTC3
    75. 6.75 RTC6
    76. 6.76 SYS16
    77. 6.77 TAB23
    78. 6.78 UCS6
    79. 6.79 UCS7
    80. 6.80 UCS9
    81. 6.81 UCS10
    82. 6.82 UCS11
    83. 6.83 USCI26
    84. 6.84 USCI30
    85. 6.85 USCI31
    86. 6.86 USCI34
    87. 6.87 USCI35
    88. 6.88 USCI39
    89. 6.89 USCI40
    90. 6.90 WDG4
  7. 7Revision History

RF1A2

RF1A Module

Category

Functional

Function

RXFIFO overflow flag does not work as intended

Description

In addition to having a 64-byte long RX FIFO, the CC430 has a one byte long pre-fetch buffer between the FIFO and the RF1A module. It also has buffers for status registers and CRC bytes. If more than 65 bytes have been received (the FIFO and the pre-fetch buffer are full) without reading the RX FIFO, the radio will enter RXFIFO_OVERFLOW state. There are, however, some cases where the radio will be stuck in RX state instead of entering RXFIFO_OVERFLOW state. Below is a table showing the register settings that will cause this problem. APPEND_STATUS is found in the PKTCTRL1 register, and CRC_EN is found in the PKTCTRL0 register.

Setting IOCFGx=0x06 should mean that the GDO signal is deasserted when the RXFIFO overflows. In the cases where the radio is stuck in RX state, the GDOx pin will not be deasserted.

When the radio is stuck in this RX state it draws current as if it was in the RX state, but it will not be able to receive any more data. The only way to get out of this state is to issue an SIDLE strobe and then flush the FIFO (SFRX).

Workaround

In applications where the packets are short enough to fit in the RX FIFO and one wants to wait for the whole packet to be received before starting to read the RX FIFO, for variable packet length mode (PKTCTRL0.LENGTH_CONFIG=1) the PKTLEN register should be set to 61 to make sure the whole packet including status bytes are 64 bytes or less (length byte (61) + 61 payload bytes + 2 status bytes = 64 bytes) or PKTLEN = 62 if fixed packet length mode is used (PKTCTRL0.LENGTH_CONFIG=0). In application where the packets do not fit in the RX FIFO, one must start reading the RX FIFO before it reaches its limit (64 bytes).