TIDUEJ8C January   2019  – May 2024

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Key System Specifications
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
    3. 2.3 Highlighted Products
      1. 2.3.1 MSPM0G1506
      2. 2.3.2 LMG2100R044
      3. 2.3.3 INA241
      4. 2.3.4 TPSM365
      5. 2.3.5 TMP303
    4. 2.4 System Design Theory
      1. 2.4.1 MPPT Operation
      2. 2.4.2 Buck Converter
        1. 2.4.2.1 Output Inductance
        2. 2.4.2.2 Input Capacitance
      3. 2.4.3 Current Sense Amplifier
        1. 2.4.3.1 Shunt Resistor Selection
        2. 2.4.3.2 Current Measurement Resolution
        3. 2.4.3.3 Shunt Resistor Power Dissipation
      4. 2.4.4 Switching Regulator
  9. 3Hardware, Software, Testing Requirements, and Test Results
    1. 3.1 Required Hardware and Software
      1. 3.1.1 Hardware
        1. 3.1.1.1 TIDA-010042
        2. 3.1.1.2 ITECH-IT6724H
        3. 3.1.1.3 Chroma, 63107A
      2. 3.1.2 Software Flow
    2. 3.2 Testing and Results
      1. 3.2.1 Test Setup
      2. 3.2.2 Test Results
  10. 4Design Files
    1. 4.1 Schematics
    2. 4.2 Bill of Materials
    3. 4.3 PCB Layout Recommendations
      1. 4.3.1 Loop Inductances
      2. 4.3.2 Current Sense Amplifiers
      3. 4.3.3 Trace Widths
      4. 4.3.4 Layout Prints
    4. 4.4 Altium Project
    5. 4.5 Gerber Files
    6. 4.6 Assembly Drawings
    7. 4.7 Software Files
  11. 5Related Documentation
    1. 5.1 Trademarks
    2. 5.2 Support Resources
  12. 6About the Author
  13. 7Revision History

Loop Inductances

When working with high frequency switching waveforms, loop inductances need to be minimized to keep ringing at a minimum. Loop inductances can arise due to component placement and routing. Place traces along the shortest distance between components and integrate bypass capacitors into the design to maintain signal integrity.

Trace length and placement need to be taken into consideration when routing. Short, straight traces produce the lowest impedance path for the signal and minimize the current loop area, thereby reducing loop inductances present.

Bypass capacitors filter and condition signals before use and place as close to the respective component as possible. Any extraneous trace between the capacitor and component mitigates the effectiveness of the bypass capacitor.

TIDA-010042 Input High Frequency
                    Capacitors Placement Figure 4-1 Input High Frequency Capacitors Placement
TIDA-010042 Small Return Path for Flux
                    Cancellation Figure 4-2 Small Return Path for Flux Cancellation