SLVSFY8B February   2020  – August 2021 DRV8210

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics DSG Package
    7. 7.7 Typical Characteristics DRL Package
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 External Components
      2. 8.3.2 Control Modes
        1. 8.3.2.1 PWM Control Mode (DSG: MODE = 0 and DRL)
        2. 8.3.2.2 PH/EN Control Mode (DSG: MODE = 1)
        3. 8.3.2.3 Half-Bridge Control Mode (DSG: MODE = Hi-Z)
      3. 8.3.3 Protection Circuits
        1. 8.3.3.1 Supply Undervoltage Lockout (UVLO)
        2. 8.3.3.2 OUTx Overcurrent Protection (OCP)
        3. 8.3.3.3 Thermal Shutdown (TSD)
      4. 8.3.4 Pin Diagrams
        1. 8.3.4.1 Logic-Level Inputs
        2. 8.3.4.2 Tri-Level Input
    4. 8.4 Device Functional Modes
      1. 8.4.1 Active Mode
      2. 8.4.2 Low-Power Sleep Mode
      3. 8.4.3 Fault Mode
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Full-Bridge Driving
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 Supply Voltage
          2. 9.2.1.2.2 Control Interface
          3. 9.2.1.2.3 Low-Power Operation
        3. 9.2.1.3 Application Curves
      2. 9.2.2 Half-Bridge Driving
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
          1. 9.2.2.2.1 Supply Voltage
          2. 9.2.2.2.2 Control Interface
          3. 9.2.2.2.3 Low-Power Operation
        3. 9.2.2.3 Application Curves
      3. 9.2.3 Dual-Coil Relay Driving
        1. 9.2.3.1 Design Requirements
        2. 9.2.3.2 Detailed Design Procedure
          1. 9.2.3.2.1 Supply Voltage
          2. 9.2.3.2.2 Control Interface
          3. 9.2.3.2.3 Low-Power Operation
        3. 9.2.3.3 Application Curves
      4. 9.2.4 Current Sense
        1. 9.2.4.1 Design Requirements
        2. 9.2.4.2 Detailed Design Procedure
          1. 9.2.4.2.1 Shunt Resistor Sizing
          2. 9.2.4.2.2 RC Filter
    3. 9.3 Current Capability and Thermal Performance
      1. 9.3.1 Power Dissipation and Output Current Capability
      2. 9.3.2 Thermal Performance
        1. 9.3.2.1 Steady-State Thermal Performance
        2. 9.3.2.2 Transient Thermal Performance
  10. 10Power Supply Recommendations
    1. 10.1 Bulk Capacitance
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Support Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Typical Characteristics DSG Package

VVCC = 3.3 V
Figure 7-1 Sleep Current (IVMQ) vs. Supply Voltage (VVM)
VVM = 5 V
Figure 7-3 Sleep Current (IVCCQ) vs. Supply Voltage (VVCC)
VVCC = 3.3 V
Figure 7-5 Active Current (IVM) vs. Supply Voltage (VVM)
VVM = 5 V
Figure 7-7 Active Current (IVCC) vs. Supply Voltage (VVCC)
VVCC < 0.35 V
Figure 7-9 VM supply current when VCC is low (IVMQ_UV) vs. Junction Temperature (TJ)
VVM = VVCC
Figure 7-11 High-Side RDS(on) vs. Supply Voltage
VVM = VVCC
Figure 7-13 Low-Side RDS(on) vs. Supply Voltage
VVCC = 3.3 V
Figure 7-15 High-Z Leakage Current into OUTx (IOUT) with OUTx connected to GND vs. Supply Voltage (VVM)
VVCC = 3.3 V
Figure 7-2 Sleep Current (IVMQ) vs. Junction Temperature (TJ)
VVM = 5 V
Figure 7-4 Sleep Current (IVCCQ) vs. Junction Temperature (TJ)
VVCC = 3.3 V
Figure 7-6 Active Current (IVM) vs. Junction Temperature (TJ)
VVM = 5 V
Figure 7-8 Active Current (IVCC) vs. Junction Temperature (TJ)
VVCC < 0.35 V
Figure 7-10 VCC supply current when VCC is low (IVCCQ_UV) vs. Junction Temperature (TJ)
VVCC = 3.3 V
Figure 7-12 High-Side RDS(on) vs. Junction Temperature (TJ)
VVCC = 3.3 V
Figure 7-14 Low-Side RDS(on) vs. Junction Temperature (TJ)
VVCC = 3.3 V
Figure 7-16 High-Z Leakage Current into OUTx (IOUT) with OUTx connected to VM vs. Supply Voltage (VVM)