SNVS421H January   2006  – October 2017 LM3100

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Hysteretic Control Circuit Overview
    4. 7.4 Device Functional Modes
      1. 7.4.1 Start-up Regulator (VCC)
      2. 7.4.2 Regulation Comparator
      3. 7.4.3 Over-Voltage Comparator
      4. 7.4.4 ON-Time Timer, Shutdown
      5. 7.4.5 Current Limit
      6. 7.4.6 N-Channel Buck Switch and Driver
      7. 7.4.7 Soft-Start
      8. 7.4.8 Thermal Protection
  8. Applications and Implementation
    1. 8.1 Applications Information
      1. 8.1.1 External Components
        1. 8.1.1.1 RFB1 and RFB2
        2. 8.1.1.2 RON
        3. 8.1.1.3 L
        4. 8.1.1.4 CVCC
        5. 8.1.1.5 CO and CO3
        6. 8.1.1.6 CIN and CIN3
        7. 8.1.1.7 CBST
        8. 8.1.1.8 CSS
        9. 8.1.1.9 CFB
    2. 8.2 Typical Application
  9. Layout
    1. 9.1 Layout Guidelines
      1. 9.1.1 PC Board Layout
  10. 10Device and Documentation Support
    1. 10.1 Receiving Notification of Documentation Updates
    2. 10.2 Community Resources
    3. 10.3 Trademarks
    4. 10.4 Electrostatic Discharge Caution
    5. 10.5 Glossary
  11. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Layout

Layout Guidelines

PC Board Layout

The LM3100 regulation, over-voltage, and current limit comparators are very fast, and will respond to short duration noise pulses. Layout considerations are therefore critical for optimum performance. The layout must be as neat and compact as possible, and all external components must be as close as possible to their associated pins. Refer to the functional block diagram, the loop formed by CIN, the high and low-side switches internal to the IC, and the PGND pin should be as small as possible. The PGND connection to Cin should be as short and direct as possible. There should be several vias connecting the Cin ground terminal to the ground plane placed as close to the capacitor as possible. The boost capacitor should be connected as close to the SW and BST pins as possible. The feedback divider resistors and the CFB capacitor should be located close to the FB pin. A long trace run from the top of the divider to the output is generally acceptable since this is a low impedance node. Ground the bottom of the divider directly to the GND (pin 7). The output capacitor, COUT, should be connected close to the load and tied directly into the ground plane. The inductor should connect close to the SW pin with as short a trace as possible to help reduce the potential for EMI (electro-magnetic interference) generation.

If it is expected that the internal dissipation of the LM3100 will produce excessive junction temperatures during normal operation, good use of the PC board’s ground plane can help considerably to dissipate heat. The exposed pad on the bottom of the IC package can be soldered to a ground plane and that plane should extend out from beneath the IC to help dissipate the heat. The exposed pad is internally connected to the IC substrate. Additionally the use of thick copper traces, where possible, can help conduct heat away from the IC. Using numerous vias to connect the die attach pad to an internal ground plane is a good practice. Judicious positioning of the PC board within the end product, along with the use of any available air flow (forced or natural convection) can help reduce the junction temperature.