SNOSB45F February   2010  – January 2016 LMV7231

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 3.3-V Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Input and Output Voltage Range Above V+
    4. 7.4 Device Functional Modes
      1. 7.4.1 +IN1 through +IN6 Input Pins
      2. 7.4.2 -IN1 through -IN6 Input Pins
      3. 7.4.3 CO1 through C06 Output Pins
      4. 7.4.4 COPOL Input Pin
      5. 7.4.5 AO Output Pin
      6. 7.4.6 AOSEL Input Pin
      7. 7.4.7 Three-Resistor Voltage Divider Selection
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curve
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Development Support
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Community Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings

See (1)(2)(3).
MIN MAX UNIT
Supply voltage 6 V
Voltage at input / output pin GND − 0.3 6 V
Output current 10 mA
Total package current 50 mA
Junction temperature(4) 150 °C
Storage temperature, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) If Military/Aerospace specified devices are required, contact the Texas Instruments Sales Office/Distributors for availability and specifications.
(3) For soldering specifications, see Absolute Maximum Ratings for Soldering (SNOA549).
(4) The maximum power dissipation is a function of TJ(MAX), RθJA. The maximum allowable power dissipation at any ambient temperature is PD = (TJ(MAX) – TA) / RθJA. All numbers apply for packages soldered directly onto a PCB.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)(2) ±2000 V
Machine model ±200
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) Human Body Model, applicable std. MIL-STD-883, Method 3015.7. Machine Model, applicable std. JESD22-A115-A (ESD MM std. of JEDEC) Field-Induced Charge-Device Model, applicable std. JESD22-C101-C (ESD FICDM std. of JEDEC).

6.3 Recommended Operating Conditions

MIN MAX UNIT
Supply voltage 2.2 5.5 V
Junction temperature(1) –40 125 °C
(1) The maximum power dissipation is a function of TJ(MAX), RθJA. The maximum allowable power dissipation at any ambient temperature is PD = (TJ(MAX) – TA) / RθJA. All numbers apply for packages soldered directly onto a PCB.

6.4 Thermal Information

THERMAL METRIC(1) LMV7231 UNIT
RTW (WQFN)
24 PINS
RθJA Junction-to-ambient thermal resistance 37.4 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 40.2 °C/W
RθJB Junction-to-board thermal resistance 16.1 °C/W
ψJT Junction-to-top characterization parameter 0.6 °C/W
ψJB Junction-to-board characterization parameter 16.2 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 5.2 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 3.3-V Electrical Characteristics

Unless otherwise specified, all limits ensured for TA = 25°C, V+ = 3.3 V ±10%, GND = 0 V, and RL > 1 MΩ.
PARAMETER TEST CONDITION MIN(1) TYP(2) MAX(1) UNIT
VTHR Threshold: input rising RL = 10 kΩ 394 400 406 mV
TA = –10°C to +70°C 391.4 408.6
VTHF Threshold: input falling RL = 10 kΩ 386 394 401 mV
TA = –10°C to +70°C 383.8 403.2
VHYST Hysteresis (VTHR − VTHF) RL = 10 kΩ 3.9 6.0 8.8 mV
IBIAS Input bias current VIN = V+, GND, and 5.5 V –5 0.05 5 nA
TA = –10°C to +70°C –15 15
VOL Output low voltage IL = 5 mA 160 200 mV
TA = –10°C to +70°C 250
IOFF Output leakage current VOUT = V+, 5.5 V and 40 mV of overdrive 0.4 μA
TA = –10°C to +70°C 1
tPDHL1 High-to-low propagation delay (+IN falling) 10 mV of overdrive 2.6 6 μs
tPDHL2 High-to-low propagation delay (-IN rising) 10 mV of overdrive 5.4 10 μs
tPDLH1 Low-to-high propagation delay (+IN rising) 10 mV of overdrive 5.6 10 μs
tPDLH2 Low-to-high propagation delay (-IN falling) 10 mV of overdrive 2.8 6 μs
tr Output rise time CL= 10 pF, RL= 10 kΩ 0.5 μs
tf Output fall time CL = 100 pF, RL = 10 kΩ 0.25 μs
TA = –10°C to +70°C 0.3
IIN(1) Digital input logic 1 leakage current 0.2 μA
TA = –10°C to +70°C 1
IIN(0) Digital input logic 0 leakage current 0.2 μA
TA = –10°C to +70°C 1
VIH Digital input logic 1 voltage TA = –10°C to +70°C 0.7 × V+ V
VIL Digital input logic 0 voltage TA = –10°C to +70°C 0.3 × V+ V
IS Power supply current No loading (outputs high) 46 60 μA
TA = –10°C to +70°C 84
VTHPSS VTH power supply sensitivity(3) V+ ramp rate = 1.1 ms
V+ step = 2.5 V to 4.5 V
400 μV
V+ ramp rate = 1.1 ms
V+ step = 4.5 V to 2.5 V
–400 μV
(1) Limits are 100% production tested at 25°C. Limits over the operating temperature range are specified through correlations using the Statistical Quality Control (SQC) method.
(2) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and also depends on the application and configuration. The typical values are not tested and are not ensured on shipped production material.
(3) VTH power supply sensitivity is defined as the temporary shift in the internal voltage reference due to a step on the V+ pin.

6.6 Typical Characteristics

V+ = 3.3 V and TA =25°C unless otherwise noted.
LMV7231 30114976.gif
Figure 1. +IN Input Rising Threshold Distribution
LMV7231 30114977.gif
Figure 3. +IN Input Falling Threshold Distribution
LMV7231 30114978.gif
Figure 5. +IN Hysteresis Distribution
LMV7231 30114946.gif
Figure 7. Input Rising Threshold Voltage vs Temperature
LMV7231 30114948.gif
Figure 9. Input Falling Threshold Voltage vs Temperature
LMV7231 30114950.gif
Figure 11. Hysteresis vs Temperature
LMV7231 30114952.gif
Figure 13. Supply Current vs Supply Voltage and Temperature
LMV7231 30114972.gif
Figure 15. Supply Current vs Output Sink Current
LMV7231 30114974.gif
Figure 17. Supply Current vs Output Sink Current
LMV7231 30114962.gif
Figure 19. Bias Current vs Input Voltage
LMV7231 30114964.gif
Figure 21. Output Voltage Low vs Output Sink Current
LMV7231 30114966.gif
Figure 23. Output Voltage Low vs Output Sink Current
LMV7231 30114968.gif
Figure 25. Output Short Circuit Current vs Output Voltage
LMV7231 30114960.gif
Figure 27. Propagation Delay vs Input Overdrive
LMV7231 30114975.gif
Figure 29. Propagation Delay
LMV7231 30114985.gif
Figure 31. Output Leakage Current vs Output Voltage
LMV7231 30114979.gif
Figure 2. −IN Input Rising Threshold Distribution
LMV7231 30114980.gif
Figure 4. −IN Input Falling Threshold Distribution
LMV7231 30114981.gif
Figure 6. −IN Hysteresis Distribution
LMV7231 30114947.gif
Figure 8. Input Rising Threshold Voltage vs Supply Voltage
LMV7231 30114949.gif
Figure 10. Input Falling Threshold Voltage vs Supply Voltage
LMV7231 30114951.gif
Figure 12. Hysteresis vs Supply Voltage
LMV7231 30114971.gif
Figure 14. Supply Current vs Output Sink Current
LMV7231 30114973.gif
Figure 16. Supply Current vs Output Sink Current
LMV7231 30114961.gif
Figure 18. Bias Current vs Input Voltage
LMV7231 30114963.gif
Figure 20. Bias Current vs Input Voltage
LMV7231 30114965.gif
Figure 22. Output Voltage Low vs Output Sink Current
LMV7231 30114967.gif
Figure 24. Output Voltage Low vs Output Sink Current
LMV7231 30114969.gif
Figure 26. Output Short Circuit Current vs Output Voltage
LMV7231 30114970.gif
Figure 28. Rise and Fall Times vs Output Pullup Resistor
LMV7231 30114984.gif
Figure 30. Output Leakage Current vs Output Voltage