SNVS440B May   2007  – March 2016 LP5520

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Function
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics
    6. 6.6  RGB Driver Electrical Characteristics (ROUT, GOUT, BOUT Outputs)
    7. 6.7  Logic Interface Characteristics
    8. 6.8  Magnetic Boost DC-DC Converter Electrical Characteristics
    9. 6.9  I2C Timing Parameters
    10. 6.10 SPI Timing Requirements
    11. 6.11 Typical Characteristics
      1. 6.11.1 RGB Driver Typical Characteristics
      2. 6.11.2 Boost Converter Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Start-Up Powering
      2. 7.3.2 RGB Driver Functionality
        1. 7.3.2.1 White Balance Control
        2. 7.3.2.2 LED Brightness Control
        3. 7.3.2.3 LED PWM Control
        4. 7.3.2.4 Sequential Mode
        5. 7.3.2.5 Current Control of the LEDs
        6. 7.3.2.6 Output Enables
        7. 7.3.2.7 Fade In and Fade Out
        8. 7.3.2.8 Temperature and Light Measurement
      3. 7.3.3 Magnetic High-Voltage Boost DC-DC Converter
        1. 7.3.3.1 Boost Control
        2. 7.3.3.2 Adaptive Output Voltage Control
    4. 7.4 Device Functional Modes
      1. 7.4.1 Manual Mode
      2. 7.4.2 Automatic Mode
      3. 7.4.3 Stand-Alone Mode
      4. 7.4.4 Start-Up Sequence
    5. 7.5 Programming
      1. 7.5.1 Control Interface
        1. 7.5.1.1 I2C Compatible Interface
          1. 7.5.1.1.1 I2C Signals
          2. 7.5.1.1.2 I2C Data Validity
          3. 7.5.1.1.3 I2C Start and Stop Conditions
          4. 7.5.1.1.4 Transferring Data
        2. 7.5.1.2 SPI Interface
          1. 7.5.1.2.1 SPI Incremental Addressing
      2. 7.5.2 EEPROM Memory
    6. 7.6 Register Maps
      1. 7.6.1 LP5520 Registers, Control Bits, and Default Values
        1. 7.6.1.1 Register Bit Conventions
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 Typical Application: I2C-Bus Control
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Recommended External Components
            1. 8.2.1.2.1.1 Output Capacitor: COUT
            2. 8.2.1.2.1.2 Input Capacitor: CIN
            3. 8.2.1.2.1.3 Output Diode: DOUT
            4. 8.2.1.2.1.4 EMI Filter Components: CSW, RSW, LSW And CHF
            5. 8.2.1.2.1.5 Inductor: L1
            6. 8.2.1.2.1.6 List Of Recommended External Components
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Stand-Alone Typical Application
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
        3. 8.2.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Community Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)(3)(2)
MIN MAX UNIT
V (SW, FB, ROUT, GOUT, BOUT) –0.3 22 V
VDDA, VDDD, VDDIO, VLDO –0.3 6 V
Voltage on logic pins –0.3 V to VDDIO 0.3 V with 6 V maximum V
Continuous power dissipation(4) Internally limited
Junction temperature, TJ-MAX 125 °C
Storage temperature, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) If Military/Aerospace specified devices are required, contact the TI Sales Office/Distributors for availability and specifications.
(3) All voltages are with respect to the potential at the GND pins.
(4) Internal thermal shutdown circuitry protects the device from permanent damage. Thermal shutdown engages at TJ = 160°C (typical) and disengages at TJ = 140°C (typical).

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±200
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
V (SW, FB, ROUT, GOUT, BOUT) 0 21 V
VDDA,DDD 2.9 5.5 V
VDDIO 1.65 VDDA V
Recommended load current (ROUT, GOUT, BOUT) per driver 0 60 mA
Junction temperature, TJ –30 125 °C
Ambient temperature, TA(2) –30 85 °C
(1) All voltages are with respect to the potential at the GND pins.
(2) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may have to be derated. Maximum ambient temperature (TA-MAX) is dependent on the maximum operating junction temperature (TJ-MAX-OP = 125°C), the maximum power dissipation of the device in the application (PD-MAX), and the junction-to ambient thermal resistance of the part/package in the application (RθJA), as given by the following equation: TA-MAX = TJ-MAX-OP – (RθJA × PD-MAX).

6.4 Thermal Information

THERMAL METRIC(1) LP5520 UNIT
YZR (DSBGA)
25 PINS
RθJA Junction-to-ambient thermal resistance 58.2 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 0.3 °C/W
RθJB Junction-to-board thermal resistance 7.9 °C/W
ψJT Junction-to-top characterization parameter 0.5 °C/W
ψJB Junction-to-board characterization parameter 7.9 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

Unless otherwise noted typical limits are for TJ = 25°C, minimum and maximum limits apply over the operating ambient temperature range (–30°C < TJ < +85°C), and specifications apply to the LP5520 Functional Block Diagram with: CVDDA/D = 100 nF, COUT = 2 × 4.7 µF, 25 V, CIN= 10 µF, 6.3 V, L1 = 4.7 µH.(1)(2)(3)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
IVDD Standby supply current
(VDDA + VDDD)
NSTBY = L, VDDIO ≥ 1.65 V 1.7 7 µA
NSTBY = L , VDDIO = 0 V 1
No-boost supply current
(VDDA + VDDD)
NSTBY = H,
EN_BOOST = L
0.9 mA
No-load supply current
(VDDA + VDDD)
NSTBY = H, EN_BOOST = H
AUTOLOAD = L
1.4
IVDDIO VDDIO standby supply current NSTBY = L 1 µA
VLDO Internal LDO output voltage VIN ≥ 2.9 V, TJ = 25°C 2.77 2.80 2.84 V
ILDO Internal LDO output current Current to external load 1 mA
(1) All voltages are with respect to the potential at the GND pins.
(2) Minimum and maximum limits are specified by design, test or statistical analysis. Typical numbers represent the most likely norm.
(3) Low-ESR Surface-Mount Ceramic Capacitors (MLCCs) used in setting electrical characteristics.

6.6 RGB Driver Electrical Characteristics (ROUT, GOUT, BOUT Outputs)

Typical limits are for TJ = 25°C, minimum and maximum limits apply over the operating ambient temperature range
(–30°C < TJ < +85°C); over operating free-air temperature range (unless otherwise noted).
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ILEAKAGE ROUT, GOUT, BOUT pin leakage current 0.1 1 µA
IMAX Maximum sink current Outputs ROUT, GOUT, BOUT control = 255 (FFH) 60 mA
IR Current accuracy of ROUT, GOUT, and BOUT Output current set to 20 mA 19 20 21 mA
–5% 5%
Output current set to 60 mA 54 60 66 mA
–10% 10%
IMATCH Matching(1) Between ROUT, GOUT, BOUT at 20 mA current ±0.2% ±2%
tPWM PWM cycle time Accuracy proportional to internal clock frequency 820 µs
ƒRGB RGB switching frequency <pwm_fast> = 0 1.22 kHz
<pwm_fast> = 1 19.52
VSAT Saturation voltage(2) I(LED) = 60 mA 550 mV
ƒMAX External PWM maximum frequency I(LED) = 60 mA, TJ = 25°C 1 MHz
(1) Matching is the maximum difference from the average when all outputs are set to same current.
(2) Saturation voltage is defined as the voltage when the LED current has dropped 10% from the value measured at 2 V.

6.7 Logic Interface Characteristics

Typical limits are for TJ = 25°C, minimum and maximum limits apply over the operating ambient temperature range
(–30°C < TJ < +85°C); over operating free-air temperature range (unless otherwise noted).
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
LOGIC INPUTS SS, SI/A0, SCK/SCL, IFSEL, NRST, PWMR, PWMG, PWMB and BRC
VIL Input low level 0.2 × VDDIO V
VIH Input high level 0.8 × VDDIO V
II Logic input current −1 1 µA
ƒSCK/SLC Clock frequency I2C mode 0.4 MHz
SPI mode, VDDIO > 1.8 V 13
SPI mode, 1.65 V < VDDIO < 1.8 V 5
LOGIC INPUT NRST
VIL Input low level 05 V
VIH Input high level 1.2 V
II Logic input current –1 1 µA
tNRST Reset pulse width 10 µs
LOGIC OUTPUT SO
VOL Output low level ISO = 3 mA
VDDIO > 1.8 V
0.3 0.5 V
ISO = 2 mA
1.65 V < VDDIO < 1.8 V
0.3 0.5 V
VOH Output high level ISO = –3 mA
VDDIO > 1.8 V
VDDIO − 0.5 VDDIO − 0.3 V
ISO = –2 mA
1.65 V < VDDIO < 1.8 V
VDDIO − 0.5 VDDIO − 0.3 V
IL Output leakage current VSO = 2.8 V 1 µA
LOGIC OUTPUT SDA
VOL Output low level ISDA = 3 mA 0.3 0.5 V

6.8 Magnetic Boost DC-DC Converter Electrical Characteristics

Typical limits are for TJ = 25°C, minimum and maximum limits apply over the operating ambient temperature range
(–30°C < TJ < +85°C); over operating free-air temperature range (unless otherwise noted).
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ILOAD Maximum continuous load current 2.9V = VIN, VOUT = 20 V
TJ = 25°C
70 mA
VOUT Output voltage accuracy (FB pin) 2.9 ≤ VIN ≤ 5.5 V, VOUT = 20 V
TJ = 25°C
–1.7% 1.7%
2.9 ≤ VIN ≤ 5.5 V, VOUT = 20 V –5% 5%
RDSON Switch ON resistance ISW = 0.5 A 0.3 Ω
ƒPWM Frequency accuracy TJ = 25°C −6% ±3% 6%
–9% 9%
tPULSE Switch pulse minimum width no load 50 ns
tSTARTUP Start-up time 20 ms
IMAX SW pin current limit 1100 mA

6.9 I2C Timing Parameters

VDD1,2 = 3 V to 4.5 V, VDDIO = 1.8 V To VDD1,2; see Figure 1.
MIN MAX UNIT
1 Hold time (repeated) START condition 0.6 µs
2 Clock low time 1.3 µs
3 Clock high time 600 ns
4 Setup time for a repeated START condition 600 ns
5 Data hold time (output direction, delay generated by LP5520) 300 900 ns
5 Data hold time (input direction, delay generated by Master) 0 900 ns
6 Data setup time 100 ns
7 Rise time of SDA and SCL 20 + 0.1Cb 300 ns
8 Fall time of SDA and SCL 15 + 0.1Cb 300 ns
9 Setup time for STOP condition 600 ns
10 Bus free time between a STOP and a START condition 1.3 µs
Cb Capacitive load for each bus line 10 200 pF

6.10 SPI Timing Requirements

See Figure 2.
MIN MAX UNIT
1 Cycle time 70 ns
2 Enable lead time 35 ns
3 Enable lag time 35 ns
4 Clock low time 35 ns
5 Clock high time 35 ns
6 Data setup time 0 ns
7 Data hold time 25 ns
8 Data access time 30 ns
9 Disable time 20 ns
10 Data valid 40 ns
11 Data hold time 0 ns
LP5520 20186154.gif Figure 1. I2C Timing Diagram
LP5520 20186132.gif Figure 2. SPI Timing Diagram

6.11 Typical Characteristics

6.11.1 RGB Driver Typical Characteristics

LP5520 20186110.gif Figure 3. VSAT vs ILED
LP5520 20186110.gif Figure 4. VSAT vs ILED

6.11.2 Boost Converter Typical Characteristics

VIN = 3.6 V, VOUT = 15 V, if not otherwise stated.
LP5520 20186123_nvs440.gif Figure 5. Boost Maximum Output Voltage vs Current
LP5520 20186128.gif Figure 7. Auto-Load Effect on Input Current, No Load
LP5520 20186124.gif Figure 6. Battery Current vs Voltage
LP5520 20186129.gif Figure 8. Adaptive Output Voltage Operation