SNIS233 February   2024 TMP110

ADVANCE INFORMATION  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Related Products
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 I2C Interface Timing
    7. 6.7 Timing Diagrams
    8. 6.8 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Digital Temperature Output
      2. 7.3.2 Decoding Temperature Data
      3. 7.3.3 Temperature Limits and Alert
    4. 7.4 Device Functional Modes
      1. 7.4.1 Continuous-Conversion Mode
      2. 7.4.2 One-Shot Mode
    5. 7.5 Programming
      1. 7.5.1 Serial Interface
      2. 7.5.2 Bus Overview
      3. 7.5.3 Device Address
      4. 7.5.4 Bus Transactions
        1. 7.5.4.1 Writes
        2. 7.5.4.2 Reads
        3. 7.5.4.3 General Call Reset Function
        4. 7.5.4.4 SMBus Alert Response
        5. 7.5.4.5 Time-Out Function
        6. 7.5.4.6 Coexist on I3C Mixed Bus
  9. Register Map
    1. 8.1 Temp_Result Register (address = 00h) [reset = xxxxh]
    2. 8.2 Configuration Register (address = 01h) [reset = 60A0h]
    3. 8.3 TLow_Limit Register (address = 02h) [reset = 4B00h]
    4. 8.4 THigh_Limit Register (address = 03h) [reset = 5000h]
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Separate I2C Pullup and Supply Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
    3. 9.3 Equal I2C Pullup and Supply Application
      1. 9.3.1 Design Requirements
      2. 9.3.2 Detailed Design Procedure
    4. 9.4 Power Supply Recommendations
    5. 9.5 Layout
      1. 9.5.1 Layout Guidelines
      2. 9.5.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

One-Shot Mode

When a 1 is written to the One_Shot bit in the configuration register, the TMP110 immediately starts a one-shot temperature conversion as shown in Figure 7-6. Requesting another conversion when the TMP110 is performing a temperature conversion, the device does not stop the active conversion. After completing the one-shot conversion the TMP110 enters shutdown mode, and the One_Shot bit is set to 1b.

GUID-20221122-SS0I-BLFF-BNL1-WN2PG1HVPXWL-low.svg Figure 7-6 One-Shot Timing Diagram

The one-shot conversion is only supported when the Shutdown bit is set to 1b. Due to the short conversion time, the TMP110 device achieves a higher conversion rate. A single conversion typically takes 10 ms and a read can take place in less than 20 µs. When using the one-shot mode, 50 or more conversions per second are possible.