SLOS524E June   2008  – May 2016 TPA2016D2

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 I2C Timing Requirements
    7. 7.7 Dissipation Ratings
    8. 7.8 Operating Characteristics
    9. 7.9 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Operation With DACs and CODECs
      2. 9.3.2 Filter-Free Operation and Ferrite Bead Filters
      3. 9.3.3 Short-Circuit Protection
      4. 9.3.4 Automatic Gain Control
        1. 9.3.4.1 Fixed Gain
        2. 9.3.4.2 Limiter Level
        3. 9.3.4.3 Compression Ratio
        4. 9.3.4.4 Interaction Between Compression Ratio and Limiter Range
        5. 9.3.4.5 Noise Gate Threshold
        6. 9.3.4.6 Maximum Gain
        7. 9.3.4.7 Attack, Release, and Hold Time
    4. 9.4 Device Functional Modes
      1. 9.4.1 TPA2016D2 AGC Operation
      2. 9.4.2 TPA2016D2 AGC Recommended Settings
    5. 9.5 Programming
      1. 9.5.1 General I2C Operation
      2. 9.5.2 Single- and Multiple-Byte Transfers
      3. 9.5.3 Single-Byte Write
      4. 9.5.4 Multiple-Byte Write and Incremental Multiple-Byte Write
      5. 9.5.5 Single-Byte Read
      6. 9.5.6 Multiple-Byte Read
    6. 9.6 Register Maps
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Applications
      1. 10.2.1 TPA2016D2 With Differential Input Signal
        1. 10.2.1.1 Design Requirements
        2. 10.2.1.2 Detailed Design Procedure
          1. 10.2.1.2.1 Surface Mount Capacitors
          2. 10.2.1.2.2 Decoupling Capacitor, CS
          3. 10.2.1.2.3 Input Capacitors, CI
        3. 10.2.1.3 Application Curves
      2. 10.2.2 TPA2016D2 With Single-Ended Input Signal
        1. 10.2.2.1 Design Requirements
        2. 10.2.2.2 Detailed Design Procedure
        3. 10.2.2.3 Application Curves
  11. 11Power Supply Recommendations
    1. 11.1 Power Supply Decoupling Capacitors
  12. 12Layout
    1. 12.1 Layout Guidelines
      1. 12.1.1 Component Location
      2. 12.1.2 Trace Width
      3. 12.1.3 Pad Side
    2. 12.2 Layout Examples
    3. 12.3 Efficiency and Thermal Considerations
  13. 13Device and Documentation Support
    1. 13.1 Device Support
      1. 13.1.1 Third-Party Products Disclaimer
    2. 13.2 Community Resources
    3. 13.3 Trademarks
    4. 13.4 Electrostatic Discharge Caution
    5. 13.5 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted).(1)
MIN MAX UNIT
VDD Supply voltage AVDD, PVDDR, PVDDL –0.3 6 V
Input voltage SDZ, INR+, INR–, INL+, INL– –0.3 VDD + 0.3 V
SDA, SCL –0.3 6
Continuous total power dissipation See Dissipation Ratings
TA Operating free-air temperature –40 85 °C
TJ Operating junction temperature –40 150 °C
RLOAD Minimum load resistance 3.2 Ω
Tstg Storage temperature –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

MIN MAX UNIT
VDD Supply voltage AVDD, PVDDR, PVDDL 2.5 5.5 V
VIH High-level input voltage SDZ, SDA, SCL 1.3 V
VIL Low-level input voltage SDZ, SDA, SCL 0.6 V
TA Operating free-air temperature –40 +85 °C

7.4 Thermal Information

THERMAL METRIC(1) TPA2016D2 UNIT
YZH (DSBGA) RTJ (QFN)
16 PINS 20 PINS
RθJA Junction-to-ambient thermal resistance 71 33.3 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 0.4 22.5 °C/W
RθJB Junction-to-board thermal resistance 14.4 9.6 °C/W
ψJT Junction-to-top characterization parameter 1.9 0.2 °C/W
ψJB Junction-to-board characterization parameter 13.6 9.6 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 2.4 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics

at TA = 25°C, VDD = 3.6 V, SDZ = 1.3 V, and RL = 8 Ω + 33 μH (unless otherwise noted).
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VDD Supply voltage range 2.5 3.6 5.5 V
ISDZ Shutdown quiescent current SDZ = 0.35 V, VDD = 2.5 V 0.1 1 µA
SDZ = 0.35 V, VDD = 3.6 V 0.2 1
SDZ = 0.35 V, VDD = 5.5 V 0.3 1
ISWS Software shutdown quiescent current SDZ = 1.3 V, VDD = 2.5 V 35 50 µA
SDZ = 1.3 V, VDD = 3.6 V 50 70
SDZ = 1.3 V, VDD = 5.5 V 75 110
IDD Supply current VDD = 2.5 V 3.5 4.5 mA
VDD = 3.6 V 3.7 4.7
VDD = 5.5 V 4.5 5.5
fSW Class D Switching Frequency 275 300 325 kHz
IIH High-level input current VDD = 5.5 V, SDZ = 5.8 V 1 µA
IIL Low-level input current VDD = 5.5 V, SDZ = –0.3 V –1 µA
tSTART Start-up time 2.5 V ≤ VDD ≤ 5.5 V no pop, CIN ≤ 1 μF 5 ms
POR Power on reset ON threshold 2 2.3 V
POR Power on reset hysteresis 0.2 V
CMRR Input common mode rejection RL = 8 Ω, Vicm = 0.5 V and
Vicm = VDD – 0.8 V,
differential inputs shorted
–70 dB
Voo Output offset voltage VDD = 3.6 V, AV = 6 dB, RL = 8 Ω, inputs AC-grounded –10 2 10 mV
ZOUT Output Impedance in shutdown mode SDZ = 0.35 V 2
Gain accuracy Compression and limiter disabled, Gain = 0 to 30 dB –0.5 0.5 dB
PSRR Power supply rejection ratio VDD = 2.5 V to 4.7 V –80 dB

7.6 I2C Timing Requirements

For I2C Interface Signals Over Recommended Operating Conditions (unless otherwise noted)
MIN TYP MAX UNIT
fSCL Frequency, SCL No wait states 400 kHz
tW(H) Pulse duration, SCL high 0.6 μs
tW(L) Pulse duration, SCL low 1.3 μs
tSU(1) Setup time, SDA to SCL 100 ns
th1 Hold time, SCL to SDA 10 ns
t(buf) Bus free time between stop and start condition 1.3 μs
tSU2 Setup time, SCL to start condition 0.6 μs
th2 Hold time, start condition to SCL 0.6 μs
tSU3 Setup time, SCL to stop condition 0.6 μs

7.7 Dissipation Ratings

PACKAGE(1) TA ≤ 25°C DERATING FACTOR TA = 70°C TA = 85°C
16-ball DSBGA 1.25 W 10 mW/°C 0.8 W 0.65 W
20–pin QFN 5.2 W 41.6 mW/°C 3.12 W 2.7 W
(1) Dissipations ratings are for a 2-side, 2-plane PCB.

7.8 Operating Characteristics

at TA = 25°C, VDD = 3.6V, SDZ = 1.3 V, RL = 8 Ω +33 μH, and AV = 6 dB (unless otherwise noted).
MIN TYP MAX UNIT
kSVR Power-supply ripple rejection ratio VDD = 3.6 Vdc with ac of 200 mVPP at 217 Hz –68 dB
THD+N Total harmonic distortion + noise faud_in = 1 kHz; PO = 550 mW; VDD = 3.6 V 0.1%
faud_in = 1 kHz; PO = 1 W; VDD = 5 V 0.1%
faud_in = 1 kHz; PO = 630 mW; VDD = 3.6 V 1%
faud_in = 1 kHz; PO = 1.4 W; VDD = 5 V 1%
NfonF Output integrated noise Av = 6 dB 44 μV
NfoA Output integrated noise Av = 6 dB floor, A-weighted 33 μV
FR Frequency response Av = 6 dB 20 20000 Hz
Pomax Maximum output power THD+N = 10%, VDD = 5 V, RL = 8 Ω 1.72 W
THD+N = 10%, VDD = 3.6 V, RL = 8 Ω 750 mW
THD+N = 10%, VDD = 5 V, RL = 4 Ω 2.8 W
THD+N = 10% , VDD = 3.6 V, RL = 4 Ω 1.5 mW
η Efficiency THD+N = 1%, VDD = 3.6 V, RL = 8 Ω, PO= 0.63 W 90%
THD+N = 1%, VDD = 5 V, RL = 8 Ω, PO = 1.4 W 90%
TPA2016D2 scl_tim_los492.gif Figure 1. SCL and SDA Timing
TPA2016D2 st_stop_los524.gif Figure 2. Start and Stop Conditions Timing

7.9 Typical Characteristics

with C(DECOUPLE) = 1 μF, CI = 1 µF.
TPA2016D2 g001_los524.gif Figure 3. Quiescent Supply Current vs Supply Voltage
TPA2016D2 g003_los524.gif Figure 5. Output Level vs Input Level With Limiter Enabled
TPA2016D2 g005_los524.gif Figure 7. Output Level vs Input Level With 4:1 Compression
TPA2016D2 g007_los524.gif Figure 9. Output Level vs Input Level
TPA2016D2 g009_los524.gif Figure 11. Total Harmonic Distortion + Noise vs Frequency
TPA2016D2 g010_los524.gif Figure 13. Total Harmonic Distortion + Noise vs Output Power
TPA2016D2 g012_los524.gif Figure 15. Efficiency vs Output Power (Per Channel)
TPA2016D2 g013_los524.gif Figure 17. Total Power Dissipation vs Total Output Power
TPA2016D2 g014_los524.gif Figure 19. Total Supply Current vs Total Output Power
TPA2016D2 pout_8ohm_los524.gif Figure 21. Output Power vs Supply Voltage
TPA2016D2 volt_time1_los488.gif Figure 23. Shutdown Time
TPA2016D2 g002_los524.gif Figure 4. Supply Current vs Supply Voltage in Shutdown
TPA2016D2 g004_los524.gif Figure 6. Output Level vs Input Level With 2:1 Compression
TPA2016D2 g006_los524.gif Figure 8. Output Level vs Input Level With 8:1 Compression
TPA2016D2 g008_los524.gif Figure 10. Total Harmonic Distortion + Noise vs Frequency
TPA2016D2 g011_los524.gif Figure 12. Supply Ripple Rejection Ratio
TPA2016D2 thd_4ohm_los524.gif Figure 14. Total Harmonic Distortion + Noise vs Output Power
TPA2016D2 eff_4ohm_los524.gif Figure 16. Efficiency vs Output Power (Per Channel)
TPA2016D2 dissf_4ohm_los524.gif Figure 18. Total Power Dissipation vs Total Output Power
TPA2016D2 sup_cur_4ohm_los524.gif Figure 20. Total Supply Current vs Total Output Power
TPA2016D2 po_v_vcc_los524.gif Figure 22. Output Power vs Supply Voltage
TPA2016D2 volt_time2_los488.gif Figure 24. Start-Up Time