SLVS978D March   2010  – September 2016 TPS61310 , TPS61311

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 I2C Interface Timing Requirements
    7. 7.7 Dissipation Ratings
    8. 7.8 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Privacy Indicator
        1. 9.3.1.1 Dedicated LED Privacy Indicator
        2. 9.3.1.2 White LED Privacy Indicator
      2. 9.3.2 Safe Operation and Protection Features
        1. 9.3.2.1 LED Temperature Monitoring (Finger-Burn Protection)
        2. 9.3.2.2 LED Failure Modes (Open and Short Detection) and Overvoltage Protection
          1. 9.3.2.2.1 LED Open Circuit Detection and Overvoltage Protection
          2. 9.3.2.2.2 Short-Circuit Protection
        3. 9.3.2.3 LED Current Ramp-Up and Ramp-Down
        4. 9.3.2.4 Battery Voltage Droop Monitoring and Protection
        5. 9.3.2.5 Undervoltage Lockout
        6. 9.3.2.6 Hot Die Detection and Thermal Shutdown
        7. 9.3.2.7 Current Limit
        8. 9.3.2.8 Flash Blanking (Tx-Mask) for Instantaneous Flash Current Reduction
      3. 9.3.3 Start-Up Sequence
      4. 9.3.4 NRESET Input: Hardware Enable or Disable
      5. 9.3.5 Serial Interface Description
        1. 9.3.5.1 F/S-Mode Protocol
        2. 9.3.5.2 H/S-Mode Protocol
        3. 9.3.5.3 TPS6131x I2C Update Sequence
        4. 9.3.5.4 Slave Address Byte
        5. 9.3.5.5 Register Address Byte
      6. 9.3.6 LED Forward Voltage Calibration
    4. 9.4 Device Functional Modes
      1. 9.4.1 Video Light and Flash Strobe Operation
        1. 9.4.1.1 LED Hardware Setup
        2. 9.4.1.2 Triggering Video Light and Flash
        3. 9.4.1.3 Level-Sensitive Flash Trigger (STT = 0)
        4. 9.4.1.4 Rising-Edge Flash Trigger (STT = 1)
      2. 9.4.2 Voltage Mode
        1. 9.4.2.1 Down Mode in Voltage Mode Operation
        2. 9.4.2.2 Power Good Indication
      3. 9.4.3 Power-Save Mode Operation, Efficiency
      4. 9.4.4 Shutdown
    5. 9.5 Register Maps
      1. 9.5.1 REGISTER0 (address = 0x00)
      2. 9.5.2 REGISTER1 (address = 0x01)
      3. 9.5.3 REGISTER2 (address = 0x02)
      4. 9.5.4 REGISTER3 (address = 0x03)
      5. 9.5.5 REGISTER4 (address = 0x04)
      6. 9.5.6 REGISTER5 (address = 0x05)
      7. 9.5.7 REGISTER6 (address = 0x06)
      8. 9.5.8 REGISTER7 (address = 0x07)
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Applications
      1. 10.2.1 2x 600-mA High Power White LED Solution Featuring Privacy Indicator
        1. 10.2.1.1 Design Requirements
        2. 10.2.1.2 Detailed Design Procedure
          1. 10.2.1.2.1 Inductor Selection
          2. 10.2.1.2.2 Input Capacitor
          3. 10.2.1.2.3 Output Capacitor
          4. 10.2.1.2.4 NTC Selection
          5. 10.2.1.2.5 Checking Loop Stability
          6. 10.2.1.2.6 LED Flash Current Level Optimization Versus Battery Droop
        3. 10.2.1.3 Application Curves
      2. 10.2.2 1200-mA High Power White LED Solution Featuring Voltage Mode
        1. 10.2.2.1 Design Requirements
        2. 10.2.2.2 Application Curves
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
    3. 12.3 Thermal Considerations
  13. 13Device and Documentation Support
    1. 13.1 Documentation Support
      1. 13.1.1 Related Documentation
    2. 13.2 Related Links
    3. 13.3 Receiving Notification of Documentation Updates
    4. 13.4 Community Resources
    5. 13.5 Trademarks
    6. 13.6 Electrostatic Discharge Caution
    7. 13.7 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

7 Specifications

7.1 Absolute Maximum Ratings

see (1)
MIN MAX UNIT
Voltage AVIN, VOUT, SW, LED1, LED2, LED3, SCL, SDA, STRB0, STRB1, NRESET, GPIO/PG, Tx-MASK, TS –0.3 7 V
Current on GPIO/PG ±25 mA
Power dissipation Internally limited
Operating ambient temperature, TA(2) –40 85 °C
Maximum operating junction temperature, TJ(2) 150 °C
Storage temperature, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) In applications where high power dissipation or poor package thermal resistance is present, the maximum ambient temperature may have to be derated. Maximum ambient temperature [TA(max)] is dependent on the maximum operating junction temperature [TJ(max)], the maximum power dissipation of the device in the application [PD(max)], and the junction-to-ambient thermal resistance of the part in the application (RθJA), as given by: TA(max) = TJ(max) – (RθJA × PD(max))

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
TJ Operating junction temperature –40 125 °C

7.4 Thermal Information

THERMAL METRIC(1) TPS6131x UNIT
YFF (DSBGA)
20 PINS
RθJA Junction-to-ambient thermal resistance 71 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 0.4 °C/W
RθJB Junction-to-board thermal resistance 21 °C/W
ψJT Junction-to-top characterization parameter 1.9 °C/W
ψJB Junction-to-board characterization parameter 11.2 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

7.5 Electrical Characteristics

Specification applies for VIN = 3.6 V over an operating junction temperature TJ = –40°C to 125°C; see Figure 24 (unless otherwise noted). Typical values are for TJ = 25°C.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SUPPLY CURRENT
VIN Input voltage 2.5 5.5 V
IQ Operating quiescent current into AVIN IOUT = 0 mA, device not switching (Power Safe Mode), –40°C ≤ TJ ≤ 85°C 590 700 µA
IOUT(DC) = 0 mA, PWM operation VOUT = 4.95 V,
voltage regulation mode
11.3 mA
ISD Shutdown current –40°C ≤ TJ ≤ 85°C 1 5 µA
VUVLO Undervoltage lockout threshold
(analog circuitry)
VIN falling 2.3 2.4 V
OUTPUT
VOUT Output voltage Current regulation mode VIN 5.5 V
Voltage regulation mode 3.825 5.7
Internal feedback voltage accuracy 2.5 V ≤ VIN ≤ 4.8 V, –20°C ≤ TJ ≤ 125°C, Boost mode, PWM voltage regulation –2% 2%
Power-save mode ripple voltage IOUT = 10 mA 0.015 × VOUT VP–P
OVP Output overvoltage protection VOUT rising, 0000 ≤ OV[3:0] ≤ 0100 4.5 4.65 4.8 V
VOUT rising, 0101 ≤ OV[3:0] ≤ 1111 5.8 6 6.2
Output overvoltage protection hysteresis VOUT falling 0.15
POWER SWITCH
rDS(on) Switch MOSFET ON-resistance VOUT = VGS = 3.6 V 90
Rectifier MOSFET ON-resistance VOUT = VGS = 3.6 V 135
Ilkg(SW) Leakage into SW VOUT = 0 V, SW = 3.6 V, –40°C ≤ TJ ≤ 85°C 0.3 4 µA
Ilim Rectifier valley current limit (open loop) VOUT = 4.95 V, –20°C ≤ TJ ≤ 85°C,
PWM operation, relative to selected ILIM
–15% 15%
OSCILLATOR
fOSC Oscillator frequency 1.92 MHz
fACC Oscillator frequency –10% 7%
THERMAL SHUTDOWN, HOT DIE DETECTOR
Thermal shutdown(2) 140 160 °C
Thermal shutdown hysteresis(2) 20 °C
Hot die detector accuracy(2) –8 8 °C
LED CURRENT REGULATOR
LED1 and LED3 current accuracy(1) 0.4 V ≤ VLED[1,3] ≤ 2 V,
0 mA ≤ ILED[1,3] ≤ 100 mA, TJ = 85°C
–10% 10%
0.4 V ≤ VLED[1,3] ≤ 2 V,
100 mA < ILED[1,3] ≤ 400 mA, TJ = 85°C
–7.5% 7.5%
LED2 current accuracy(1) 0.4 V ≤ VLED2 ≤ 2 V,
0 mA ≤ ILED2 ≤ 250 mA, TJ = 85°C
–10% 10%
0.4 V ≤ VLED2 ≤ 2 V,
250 mA ≤ ILED2 ≤ 800 mA, TJ = 85°C
–7.5% 7.5%
LED1 and LED3 current matching(1) –10% 10%
LED1, LED2, and LED3 current temperature coefficient 0.05 %/°C
INDLED current accuracy 1.5 V ≤ (VIN – VINDLED) ≤ 2.5 V
2.6 mA ≤ IINDLED ≤ 15.8 mA, TJ = 25°C
–20% 20%
INDLED current temperature coefficient 0.05 %/°C
LED1, LED2, and LED3 sense voltage ILED[1,2,3] = full-scale current 400 mV
VDO VOUT dropout voltage IOUT = –15.8 mA, TJ = 25°C, device not switching 250 mV
LED1, LED2, and LED3 input leakage current VLED[1,2,3] = VOUT = 5 V, –40°C ≤ TJ ≤ 85°C 0.1 4 µA
INDLED input leakage current VINDLED = 0 V, –40°C ≤ TJ ≤ 85°C 0.1 1 µA
LED TEMPERATURE MONITORING
IO(TS) Temperature Sense Current Source Thermistor bias current 23.8 µA
TS Resistance (Warning Temperature) LEDWARN bit = 1 39 44.5 50
TS Resistance (Hot Temperature) LEDHOT bit = 1 12.5 14.5 16.5
SDA, SCL, GPIO/PG, Tx-MASK, STRB0, STRB1, NRESET
V(IH) High-level input voltage 1.2 V
V(IL) Low-level input voltage 0.4 V
V(OL) Low-level output voltage (SDA) IOL = 8 mA 0.3 V
Low-level output voltage (GPIO) DIR = 1, IOL = 5 mA 0.3
V(OH) High-level output voltage (GPIO) DIR = 1, GPIOTYPE = 0, IOH = 8 mA VIN – 0.4 V
I(LKG) Logic input leakage current Input connected to VIN or GND, –40°C ≤ TJ ≤ 85°C 0.01 0.1 µA
RPD STRB0, STRB1 pulldown resistance STRB0, STRB1 ≤ 0.4 V 400
NRESET pulldown resistance NRESET ≤ 0.4 V 400
Tx-MASK pulldown resistance Tx-MASK ≤ 0.4 V 400
C(IN) SDA Input Capacitance SDA = VIN or GND 9 pF
SCL Input Capacitance SCL = VIN or GND 4
GPIO/PG Input Capacitance DIR = 0, GPIO/PG = VIN or GND 9
STRB0 Input Capacitance STRB0 = VIN or GND 3
STRB1 Input Capacitance STRB1 = VIN or GND 3
NRESET Input Capacitance NRESET = VIN or GND 3.5
Tx-MASK Input Capacitance Tx-MASK = VIN or GND 4
TIMING
tNRESET Reset pulse width 10 µs
Start-up time From shutdown into video light mode
ILED = 150 mA
1.2 ms
LED current settling time(3) triggered by a rising edge on STRB0 MODE_CTRL[1:0] = 10, ILED2 = from 0 mA to 950 mA 500 µs
LED current settling time(3) triggered by Tx-MASK MODE_CTRL[1:0] = 10, ILED2 = from 950 mA to 150 mA 20 µs
(1) Verified by characterization. Not tested in production.
(2) Verified by characterization. Not tested in production.
(3) Settling time to ±15% of the target value.

7.6 I2C Interface Timing Requirements

see (1)
MIN MAX UNIT
f(SCL) SCL Clock Frequency Standard mode 100 kHz
Fast mode 400
High-speed mode (write operation), CB – 100 pF max 3.4 MHz
High-speed mode (read operation), CB – 100 pF max 3.4
High-speed mode (write operation), CB – 400 pF max 1.7
High-speed mode (read operation), CB – 400 pF max 1.7
tBUF Bus Free Time Between a STOP and START Condition Standard mode 4.7 µs
Fast mode 1.3
tHD, tSTA Hold Time (Repeated) START
Condition
Standard mode 4 µs
Fast mode 600 ns
High-speed mode 160
tLOW LOW Period of the SCL Clock Standard mode 4.7 µs
Fast mode 1.3
High-speed mode, CB – 100 pF max 160 ns
High-speed mode, CB – 400 pF max 320
tHIGH HIGH Period of the SCL Clock Standard mode 4 µs
Fast mode 600 ns
High-speed mode, CB – 100 pF max 60
High-speed mode, CB – 400 pF max 120
tSU, tSTA Setup Time for a Repeated START Condition Standard mode 4.7 µs
Fast mode 600 ns
High-speed mode 160
tSU, tDAT Data Setup Time Standard mode 250 ns
Fast mode 100
High-speed mode 10
tHD, tDAT Data Hold Time Standard mode 0 3.45 µs
Fast mode 0 0.9
High-speed mode, CB – 100 pF max 0 70 ns
High-speed mode, CB – 400 pF max 0 150
tRCL Rise Time of SCL Signal Standard mode 20 + 0.1 × CB 1000 ns
Fast mode 20 + 0.1 × CB 300
High-speed mode, CB – 100 pF max 10 40
High-speed mode, CB – 400 pF max 20 80
tRCL1 Rise Time of SCL Signal After a Repeated START Condition and After an Acknowledge BIT Standard mode 20 + 0.1 × CB 1000 ns
Fast mode 20 + 0.1 × CB 300
High-speed mode, CB – 100 pF max 10 80
High-speed mode, CB – 400 pF max 20 160
tFCL Fall Time of SCL Signal Standard mode 20 + 0.1 × CB 300 ns
Fast mode 20 + 0.1 × CB 300
High-speed mode, CB – 100 pF max 10 40
High-speed mode, CB – 400 pF max 20 80
tRDA Rise Time of SDA Signal Standard mode 20 + 0.1 × CB 1000 ns
Fast mode 20 + 0.1 × CB 300
High-speed mode, CB – 100 pF max 10 80
High-speed mode, CB – 400 pF max 20 160
tFDA Fall Time of SDA Signal Standard mode 20 + 0.1 × CB 300 ns
Fast mode 20 + 0.1 × CB 300
High-speed mode, CB – 100 pF max 10 80
High-speed mode, CB – 400 pF max 20 160
tSU, tSTO Setup Time for STOP Condition Standard mode 4 µs
Fast mode 600 ns
High-speed mode 160
CB Capacitive Load for SDA and SCL 400 pF
(1) Specified by design. Not tested in production.

7.7 Dissipation Ratings

PACKAGE POWER RATING (TA = 25°C) DERATING FACTOR ABOVE TA = 25°C(1)
YFF 1.4 W 14 mW/°C
(1) Maximum power dissipation is a function of TJ(max), RθJA and TA. The maximum allowable power dissipation at any allowable ambient temperature is PD = (TJ(max) – TA) / RθJA.
TPS61310 TPS61311 fs_timing_lvs957.gif Figure 1. Serial Interface Timing For F/S-Mode
TPS61310 TPS61311 hs_timing_lvs957.gif Figure 2. Serial Interface Timing For H/S-Mode

7.8 Typical Characteristics

Table 1. Table of Graphs

CAPTION FIGURE
LED Power Efficiency Input Voltage Figure 3, Figure 4
DC Input Current Input Voltage Figure 5
LED Current LED Pin Headroom Voltage Figure 6, Figure 7
LED Current LED Current Digital Code Figure 8, Figure 9, Figure 10, Figure 11
INDLED Current INDLED Pin Headroom Voltage Figure 12
Efficiency Output Current Figure 13, Figure 14
DC Output Voltage Load Current Figure 15, Figure 16
Maximum Output Current Input Voltage Figure 17
DC Precharge Current Differential I/O Voltage Figure 18, Figure 19
Supply Current Input Voltage Figure 20
Temperature Detection Threshold Figure 21, Figure 22
Junction Temperature Port Voltage Figure 23
TPS61310 TPS61311 tc1_lvs978.gif Figure 3. LED Power Efficiency vs Input Voltage
TPS61310 TPS61311 tc3_lvs978.gif Figure 5. DC Input Current vs Input Voltage
TPS61310 TPS61311 tc2_lvs978.gif Figure 4. LED Power Efficiency vs Input Voltage
TPS61310 TPS61311 tc4_lvs978.gif Figure 6. LED2 Current vs LED2 Pin Headroom Voltage
TPS61310 TPS61311 tc5_lvs978.gif Figure 7. LED1 + LED3 Current vs
LED1 + LED3 Pin Headroom Voltage
TPS61310 TPS61311 tc8_lvs978.gif Figure 9. LED1, LED3 Current vs
LED1, LED3 Current Digital Code
TPS61310 TPS61311 tc10_lvs978.gif Figure 11. LED1, LED3 Current vs
LED1, LED3 Current Digital Code
TPS61310 TPS61311 tc12_lvs978.gif Figure 13. Efficiency vs Output Current
TPS61310 TPS61311 tc14_lvs978.gif Figure 15. DC Output Voltage vs Load Current
TPS61310 TPS61311 tc16_lvs978.gif Figure 17. Maximum Output Current vs Input Voltage
TPS61310 TPS61311 tc18_lvs978.gif Figure 19. DC Precharge Current vs
Differential I/O Voltage
TPS61310 TPS61311 tc24_lvs978.gif Figure 21. Temperature Detection Threshold
TPS61310 TPS61311 tc26_lvs978.gif Figure 23. Junction Temperature vs Port Voltage
TPS61310 TPS61311 tc7_lvs978.gif Figure 8. LED2 Current vs LED2 Current Digital Code
TPS61310 TPS61311 tc9_lvs978.gif Figure 10. LED2 Current vs LED2 Current Digital Code
TPS61310 TPS61311 tc11_lvs978.gif Figure 12. INDLED Current vs
INDLED Pin Headroom Voltage
TPS61310 TPS61311 tc13_lvs978.gif Figure 14. Efficiency vs Output Current
TPS61310 TPS61311 tc15_lvs978.gif Figure 16. DC Output Voltage vs Load Current
TPS61310 TPS61311 tc17_lvs978.gif Figure 18. DC Precharge Current vs
Differential I/O Voltage
TPS61310 TPS61311 tc22_lvs978.gif Figure 20. Supply Current vs Input Voltage
TPS61310 TPS61311 tc25_lvs978.gif Figure 22. Temperature Detection Threshold