SLUSF10B february   2023  – june 2023 UCC14141-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Revision History
  6. Device Comparison
  7. Pin Configuration and Functions
  8. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Insulation Specifications
    6. 7.6  Safety-Related Certifications
    7. 7.7  Electrical Characteristics
    8. 7.8  Safety Limiting Values
    9. 7.9  Insulation Characteristics
    10. 7.10 Typical Characteristics
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Power Stage Operation
        1. 8.3.1.1 VDD-VEE Voltage Regulation
        2. 8.3.1.2 COM-VEE Voltage Regulation
        3. 8.3.1.3 Power Handling Capability
      2. 8.3.2 Output Voltage Soft Start
      3. 8.3.3 ENA and PG
      4. 8.3.4 Protection Functions
        1. 8.3.4.1 Input Undervoltage Lockout
        2. 8.3.4.2 Input Overvoltage Lockout
        3. 8.3.4.3 Output Undervoltage Protection
        4. 8.3.4.4 Output Overvoltage Protection
        5. 8.3.4.5 Overpower Protection
        6. 8.3.4.6 Overtemperature Protection
    4. 8.4 Device Functional Modes
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Capacitor Selection
        2. 9.2.2.2 Single RLIM Resistor Selection
        3. 9.2.2.3 RDR Circuit Component Selection
    3. 9.3 System Examples
    4. 9.4 Power Supply Recommendations
    5. 9.5 Layout
      1. 9.5.1 Layout Guidelines
      2. 9.5.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Power Stage Operation

The UCC14141-Q1 module uses an active full-bridge inverter on the primary-side and a passive full-bridge rectifier on the secondary-side. The small integrated transformer has a relatively high carrier frequency to reduce the size for integrating into the 36-pin SSOP package. The power stage carrier frequency operates within 10 MHz to 22 MHz. The power stage carrier frequency is determined by input voltage with a feed-forward control: when VVIN is 8 V, the frequency is 22 MHz; when VVIN is 18 V, the frequency is 10 MHz; when VVIN is between 8 V and 18 V, the frequency reduces gradually from 22 MHz to 10 MHz as VVIN voltage rises. Spread spectrum modulation, SSM, is used to reduce emissions. ZVS operation is maintained to reduce switching power losses.

The UCC14141-Q1 module creates two regulated outputs. It can be configured as a single output converter, VDD to VEE only, or a dual-output converter, VDD to VEE and COM to VEE. Even though the module uses VEE as the reference point to create two positive output voltages, the outputs can use COM as the reference point and become a positive and a negative output.

These two outputs are controlled independently through hysteresis control. Furthermore, the VDD-VEE is the main output, and COM to VEE uses the main output as its input to created a second regulated output voltage.