SLES275A January   2015  – December 2017 VSP5324-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics: Dynamic Performance
    6. 6.6  Electrical Characteristics: General
    7. 6.7  Electrical Characteristics: Digital
    8. 6.8  Timing Requirements
    9. 6.9  LVDS Timing at Different Sampling Frequencies (One-Lane Interface, 12x Serialization)
    10. 6.10 LVDS Timing at Different Sampling Frequencies (Two-Lane Interface, 6x Serialization)
    11. 6.11 Serial Interface Timing Requirements
    12. 6.12 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagrams
    3. 7.3 Feature Description
      1. 7.3.1 Analog Input
        1. 7.3.1.1 Large- and Small-Signal Input Bandwidth
      2. 7.3.2 Digital Processing Block
        1. 7.3.2.1 Digital Gain
        2. 7.3.2.2 ADC Input Polarity Inversion
        3. 7.3.2.3 SYNC Function
        4. 7.3.2.4 Output Data Format
      3. 7.3.3 Serial LVDS Interface
        1. 7.3.3.1 One-Lane, 12x Serialization with DDR Bit Clock and 1x Frame Clock
        2. 7.3.3.2 Two-Lane, 6x Serialization with DDR Bit Clock and 0.5x Frame Clock
      4. 7.3.4 Bit Clock Programmability
      5. 7.3.5 LVDS Output Data and Clock Buffers
    4. 7.4 Device Functional Modes
      1. 7.4.1 External Reference Mode Of Operation
        1. 7.4.1.1 Using the REF Pins
        2. 7.4.1.2 Using the VCM Pin
    5. 7.5 Programming
      1. 7.5.1 Serial Interface
      2. 7.5.2 Register Initialization
      3. 7.5.3 Serial Register Readout
    6. 7.6 Register Maps
      1. 7.6.1 Serial Registers
        1. 7.6.1.1  Register 00h (offset = 00h) [reset = 0]
        2. 7.6.1.2  Register 01h (offset = 01h) [reset = 0]
        3. 7.6.1.3  Register 02h (offset = 02h) [reset = 0]
        4. 7.6.1.4  Register 0Ah (offset = 0Ah) [reset = 0]
        5. 7.6.1.5  Register 0Fh (offset = 0Fh) [reset = 0]
        6. 7.6.1.6  Register 14h (offset = 14h) [reset = 0]
        7. 7.6.1.7  Register 1Ch (offset = 1Ch) [reset = 0]
        8. 7.6.1.8  Register 23h (offset = 23h) [reset = 0]
        9. 7.6.1.9  Register 24h (offset = 24h) [reset = 0]
        10. 7.6.1.10 Register 25h (offset = 25h) [reset = 0]
        11. 7.6.1.11 Register 26h (offset = 26h) [reset = 0]
        12. 7.6.1.12 Register 27h (offset = 27h) [reset = 0]
        13. 7.6.1.13 Register 28h (offset = 28h) [reset = 0]
        14. 7.6.1.14 Register 29h (offset = 29h) [reset = 0]
        15. 7.6.1.15 Register 2Ah (offset = 2Ah) [reset = 0]
        16. 7.6.1.16 Register 2Bh (offset = 2Bh) [reset = 0]
        17. 7.6.1.17 Register 2Eh (offset = 2Eh) [reset = 0]
        18. 7.6.1.18 Register 30h (offset = 30h) [reset = 0]
        19. 7.6.1.19 Register 33h (offset = 33h) [reset = 0]
        20. 7.6.1.20 Register 35h (offset = 35h) [reset = 0]
        21. 7.6.1.21 Register 38h (offset = 38h) [reset = 0x0000]
        22. 7.6.1.22 Register 42h (offset = 42h) [reset = 0]
        23. 7.6.1.23 Register 45h (offset = 45h) [reset = 0]
        24. 7.6.1.24 Register 46h (offset = 46h) [reset = 0]
        25. 7.6.1.25 Register 50h (offset = 50h) [reset = 0]
        26. 7.6.1.26 Register 51h (offset = 51h) [reset = 0]
        27. 7.6.1.27 Register 53h (offset = 53h) [reset = 0]
        28. 7.6.1.28 Register 54h (offset = ) [reset = 0]
        29. 7.6.1.29 Register 55h (offset = 55h) [reset = 0]
        30. 7.6.1.30 Register F0h (offset = F0h) [reset = 0]
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Drive Circuit Requirements
        2. 8.2.2.2 Clock Input
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 General Guidelines
      2. 10.1.2 Grounding
      3. 10.1.3 Supply Decoupling
      4. 10.1.4 Exposed Pad
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Device Nomenclature
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Receiving Notification of Documentation Updates
    4. 11.4 Community Resources
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Detailed Description

Overview

The VSP5324-Q1 device is a high-performance, 12-bit, quad-channel, analog-to-digital converter (ADC) with sample rates up to 80 MSPS. The conversion process is initiated by a rising edge of the external input clock and when the analog input signal is sampled. The sampled signal is sequentially converted by a series of small resolution stages, with the outputs combined in a digital correction logic block. At every clock edge the sample propagates through the pipeline, resulting in a data latency of 11 clock cycles. The output is available as 12-bit data, in serial (low-voltage differential signaling) LVDS format, coded in either offset binary or binary twos complement format.

Functional Block Diagrams

VSP5324-Q1 fbd-1lane_sles275.gif Figure 40. Quad ADC, One-Lane Configuration
VSP5324-Q1 fbd-2lane_sles275.gif Figure 41. Quad ADC, Two-Lane Configuration

Feature Description

Analog Input

The analog input consists of a switched-capacitor-based differential sample-and-hold architecture, as shown in Figure 42. This differential topology results in very good AC performance even for high-input frequencies at high sampling rates. The INx_P and INx_M pins must be externally biased around a common-mode voltage of 0.95 V, available on the VCM pin. For a full-scale differential input, each input pin (INx_P, INx_M) must swing symmetrically between VCM + 0.5 V and VCM – 0.5 V, resulting in a 2-VPP differential input swing. The input sampling circuit has a high 3-dB bandwidth that extends up to 550 MHz (measured from the input pins to the sampled voltage).

VSP5324-Q1 ai_analog_equiv_cir_sles275.gif Figure 42. Analog Input Equivalent Circuit

Large- and Small-Signal Input Bandwidth

The analog input circuit small-signal bandwidth is high, approximately 550 MHz. When using an amplifier to drive the VSP5324-Q1 device, the total amplifier noise up to small-signal bandwidth must be considered. The device large-signal bandwidth depends on the input signal amplitude. The VSP5324-Q1 device supports 2-VPP amplitude for input signal frequencies up to 80 MHz. For higher frequencies (greater than 80 MHz), the input signal amplitude must be decreased proportionally. For example, at 160 MHz, the device supports a maximum of 1-VPP signal.

Digital Processing Block

The VSP5324-Q1 device integrates a set of commonly-used digital functions that can be used to ease system design such as test patterns and gain.

Digital Gain

The VSP5324-Q1 device includes programmable digital gain settings from 0 dB to 12 dB in 1-dB steps. The benefit of digital gain is to obtain improved SFDR performance. SFDR improvement is achieved at the expense of SNR; for each gain setting, SNR degrades by approximately 1 dB. Therefore, gain can be used to trade-off between SFDR and SNR.

For each gain setting, the analog input full-scale range support scales proportionally, as shown in Table 1. After reset, the device is in 0-dB gain mode. To use other gain settings, program the GAIN_CHx bits in registers 2Ah (see the Register 2Ah (offset = 2Ah) [reset = 0] section) and 2Bh (see the Register 2Bh (offset = 2Bh) [reset = 0] section).

Table 1. Analog Input Full-Scale Range Across Gains

DIGITAL GAIN (dB) FULL-SCALE (VPP)
0 2
1 1.78
2 1.59
3 1.42
4 1.26
5 1.12
6 1.00
7 0.89
8 0.80
9 0.71
10 0.63
11 0.56
12 0.50

ADC Input Polarity Inversion

Normally, the INx_P pin represents the positive analog input pin and INx_M represents the complementary negative input. Setting the INVERT_ CH[4:1] bits listed in Table 2 (which provide individual control for each channel) causes the inputs to be swapped. INN now represents the positive input and INx_P represents the negative input.

Table 2. Polarity Inversion

ADDRESS (HEX) D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
24 PRBS_SEED[22:16] X(1) INVERT_CH4 X INVERT_CH3 X X INVERT_CH2 X INVERT_CH1
X = don't care.

SYNC Function

The SYNC function can be used to synchronize the RAMP test patterns across channels. This function can be enabled using either the hardware pin (SYNC) or software register bits.

To enable the software sync, set the register bit, EN_SYNC. To use the SYNC pin, set the EN_SYNC and HARD_SYNC_TP register bits. Note that SYNC pin is disabled after reset.

Output Data Format

Two output data formats are supported: twos complement and offset binary. These modes can be selected using the BTC_MODE serial interface register bit.

For a positive overload, the D[11:0] output data bits are FFFh in offset binary output format and 7FFh in twos complement output format. For a negative input overload, the output code is 000h in offset binary output format and 800h in twos complement output format.

Serial LVDS Interface

The VSP5324-Q1 device offers several flexible output options which makes interfacing to an (application-specific integrated circuit) ASIC or an (field-programmable gate array) FPGA easy. Each option can be easily programmed using the serial interface. Table 3 lists a summary of all options. This table also lists the default values after power-up and reset and a detailed description of each option. The output interface options are one-lane and two-lane serialization, and are described in the One-Lane, 12x Serialization with DDR Bit Clock and 1x Frame Clock and Two-Lane, 6x Serialization with DDR Bit Clock and 0.5x Frame Clock sections, respectively.

Table 3. Summary of Output Interface Options

FEATURE OPTIONS AVAILABLE IN DEFAULT AFTER RESET DESCRIPTION
ONE-LANE TWO-LANE
Lane interface One and two lanes Yes Yes One-lane One-lane: ADC data are sent serially over one pair of LVDS pins
Two-lane: ADC data are split and sent serially over two pairs of LVDS pins
Serialization factor 12x Yes No 12x
DDR bit clock frequency 6x Yes No 6x
3x No Yes Only with two-lane interface
Frame clock frequency 1x sample rate Yes No 1x
1/2x sample rate No Yes Only with two-lane interface
Bit sequence Byte-wise No Yes Byte-wise These options are available only with two-lane interface.
Byte wise: ADC data are split into upper and lower bytes that are output on separate lanes.
Bit wise: ADC data are split into even and odd bits that are output on separate lanes.
Word wise: Successive ADC data samples are sent over separate lanes.
Bit-wise No Yes Byte-wise
Word-wise No Yes Byte-wise

One-Lane, 12x Serialization with DDR Bit Clock and 1x Frame Clock

The 12-bit ADC data are serialized and output over one LVDS pair per channel along with a 6x bit clock and 1x frame clock, as shown in Figure 43. The output data rate is 12x sample rate and is therefore suited for low sample rates (typically up to 50 MSPS).

VSP5324-Q1 ai_tim_lvds_1lane_12x_sles275.gif

NOINDENT:

Upper number is the data bit in MSB-first mode. Lower number in parenthesis is the data bit in LSB-first mode.
Figure 43. LVDS Output Interface, One-Lane, 12x Serialization

Two-Lane, 6x Serialization with DDR Bit Clock and 0.5x Frame Clock

In the two-lane serialization option, the 12-bit ADC data are serialized and output over two LVDS pairs per channel. The output data rate is a 6x sample rate with a 3x bit clock and a 1x frame clock.

Compared to the one-line scenario, the two-line output data rate is half the amount. This difference allows the device to be used up to the maximum sampling rate. Two-lane serialization is available in bit-, byte-, and word-wise modes. Figure 44 shows the bit- and byte-wise modes and Figure 45 shows the word-wise mode.

VSP5324-Q1 ai_tim_lvds_2lane_6x_bit-byte_sles275.gif

NOINDENT:

The upper number is the data bit in MSB-first mode. The lower number in parenthesis is the data bit in LSB-first mode.

NOINDENT:

The unshaded cells indicate sample N data. The shaded cells indicate sample N + 1 data.
Figure 44. LVDS Output Interface, Two-Lane, 6x Serialization, Byte-Wise and Bit-Wise Modes
VSP5324-Q1 ai_tim_lvds_2lane_6x_word_sles275.gif

NOINDENT:

The upper number is the data bit in MSB-first mode. The lower number in parenthesis is the data bit in LSB-first mode.

NOINDENT:

The unshaded cells indicate sample N data. The shaded cells indicate sample N + 1 data.
Figure 45. LVDS Output Interface, Two-Lane, 6x Serialization, Word-Wise Mode

Bit Clock Programmability

The VSP5324-Q1 output interface is normally a DDR interface with the LCLK rising and falling edge transitions in the middle of alternate data windows. Figure 46 shows this default phase.

VSP5324-Q1 ai_tim_lclk_default_sles275.gif Figure 46. LCLK Default Phase (PHASE_DDR[1:0] = 10)

The LCLK phase can be programmed relative to the output frame clock and data using the PHASE_DDR[1:0] bits in Table 4. Figure 47 shows the LCLK phase modes.

Table 4. Clock Programmability

ADDRESS (HEX) D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
42 EN_REF_VCM0 X(1) X X X X X X X PHASE_DDR[1:0] X EN_REF_VCM1 X X X
X = don't care.
VSP5324-Q1 ai_tim_lclk_phase_sles275.gif Figure 47. LCLK Phase Programmability Modes

LVDS Output Data and Clock Buffers

Figure 48 shows the equivalent circuit of each LVDS output buffer. After reset, the buffer presents a 100-Ω output impedance to match the external 100-Ω termination.

The VID voltage is nominally 350 mV, resulting in an output swing of ±350 mV with 100-Ω external termination. The buffer output impedance behaves in the same way as a source-side series termination. By absorbing reflections from the receiver end, the buffer helps improve signal integrity.

VSP5324-Q1 ai_lvds_buffer_sles275.gif Figure 48. LVDS Buffer Equivalent Circuit

Device Functional Modes

External Reference Mode Of Operation

The VSP5324-Q1 device supports an external reference mode of operation either by:

  • Forcing the reference voltages on the REFT and REFB pins, or by
  • Applying the reference voltage on the VCM pin.

This mode can be used to operate multiple VSP5324-Q1 chips with the same (externally applied) reference voltage.

Using the REF Pins

For normal operation, the device requires two reference voltages, REFT and REFB. By default, the device generates these two voltages internally. To enable the external reference mode, set the register bits as listed in Table 5. This procedure powers down the internal reference amplifier and the two reference voltages can be forced directly on the REFT and REFB pins as (V(REFT) = 1.45 V ± 50 mV) and (V(REFB) = 0.45 V ±50 mV).

Use to calculate the relationship between the ADC full-scale input voltage (VFS) and the applied reference voltages.

Equation 1. VSP5324-Q1 q_fs_vin_vreftb_sles275.gif

Using the VCM Pin

In this mode, an external reference voltage (VREFIN) can be applied to the VCM pin. UseEquation 2 to calculate the relationship between the ADC full-scale input voltage and VREFIN.

Equation 2. VSP5324-Q1 q_fs_vin_vrefin_sles275.gif

To enable this mode, set the register bits as listed in Table 5. This action changes the function of the VCM pin to an external reference input pin. The voltage applied on VCM must be 1.5 V ±50 mV.

Table 5. External Reference Function

FUNCTION EN_HIGH_ADDRS EN_EXT_REF EXT_REF_VCM
External reference using the REFT and REFB pins 1 1 00
External reference using the VCM pin 1 1 11

Programming

Serial Interface

The VSP5324-Q1 device has a set of internal registers that can be accessed by the serial interface formed by the CS (serial interface enable), SCLK (serial interface clock), and SDATA (serial interface data) pins. When CS is low the following occurs:

  • The serial shift of bits into the device is enabled.
  • Serial data (on the SDATA pin) are latched at every SCLK rising edge.
  • The serial data are loaded into the register at every 24th SCLK rising edge.

If the word length exceeds a multiple of 24 bits, the excess bits are ignored. Data can be loaded in multiples of 24-bit words within a single active CS pulse.

The first eight bits form the register address and the remaining 16 bits form the register data. The interface can function with SCLK frequencies from 15 MHz down to very low speeds (of few Hertz) and also with a non-50% SCLK duty cycle.

Register Initialization

After power-up, the internal registers must be initialized to the default values. This reset can be accomplished in one of two ways:

  1. A hardware reset is applied by a low-going pulse on the RESET pin (widths greater than 10 ns), as shown in Figure 3 and Serial Interface Timing Requirements.
  2. A software reset is applied by using the serial interface and setting the RST bit (register 00h, bit D0) high. This setting initializes the internal registers to default values and then self-resets the RST bit low. In this case, the RESET pin is kept high (inactive).

See the Serial Interface Timing Requirements section and Figure 3 for timing information.

Serial Register Readout

The device includes a mode where the contents of the internal registers can be readback on the SDOUT pin, as shown in Figure 49. This mode can useful as a diagnostic check to verify the serial interface communication between the external controller and ADC.

By default, after power-up and device reset, the SDOUT pin is high-impedance. When readout mode is enabled using the READOUT register bit, the SDOUT pin outputs the contents of the selected register serially in the following sequence:

  1. The READOUT register bit must be set to 1 in order for the device to enter readout mode. This setting disables any further writes into the internal registers, except for the register at address 01h. Note that the READOUT bit is also located in this register. The device can exit readout mode by writing the READOUT bit to 0. Only the register contents of address 01h are unable to be read in register readout mode.
  2. The read cycle is initiated by clocking the register address A[7:0] on the SDIN pin.
  3. The device serially outputs the contents (D[15:0]) of the selected register on the SDOUT pin.
  4. The external controller latches the contents at the SCLK rising edge.
  5. The READOUT register bit is set to 0 to exit serial readout mode, which enables all registers of the device to be written to. At this point, the SDOUT pin enters a high-impedance state.

VSP5324-Q1 ai_tim_serial_readout_sles275.gif Figure 49. Serial Readout Timing

After reset, the device default states include the following:

  • The device is in normal operation mode with 12x serialization enabled for all channels.
  • Output interface is one-lane, 12x serialization with a 6x bit clock and a 1x frame clock frequency.
  • Data format is LSB-first and offset binary.
  • Serial readout is disabled.
  • The PD pin is configured as a global power-down pin.
  • Digital gain is set to 0 dB.

Register Maps

Table 6. Serial Register Memory Map

ADDRESS D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
00 X(1) X X X X X X X X X X X X X X RST
01 X X X X X X X X X X X EN_HIGH_
ADDRS
X X X READOUT
02 X X EN_SYNC X X X X X X X X X X X X X
0A RAMP_PAT_RESET_VAL
0F X X X X X PDN_PIN_
CFG
PDN_
COM
PLETE
PDN_
PARTIAL
PDN_CH4 X PDN_CH3 X PDN_CH2 X PDN_CH1 X
14 X X X X X X X X LFNS_CH4 X LFNS_CH3 X X LFNS_CH2 X LFNS_CH1
1C X EN_
FRAME_
PAT
ADCLKOUT[11:0] X X
23 PRBS_SEED[15:0]
24 PRBS_SEED[22:16] X INVERT_
CH4
X INVERT_
CH3
X X INVERT_
CH2
X INVERT_
CH1
25 HARD_
SYNC_TP
PRBS_
SEED_
FROM_
REG
X PRBS_
TP_EN
X X X TP_SOFT_SYNC X EN_RAMP DUAL_
CUSTOM_
PAT
SINGLE_
CUSTOM_
PAT
BITS_CUSTOM2[13:12] BITS_CUSTOM1[13:12]
26 BITS_CUSTOM1[9:0] X X X X X X
27 BITS_CUSTOM2[9:0] X X X X X X
28 EN_BIT
ORDER
X X X X X X BIT_WISE EN_WORDWISE_BY_CH[7:0]
29 X X X X X X X X X X X X X X GLOBAL_
EN_FILTER
X
2A X X X X GAIN_CH2[3:0] X X X X GAIN_CH1[3:0]
2B X X X X GAIN_CH3[3:0] X X X X GAIN_CH4[3:0]
2E X HPF_EN_
CH1
HPF_CORNER _CH1[3:0] FILTER1_COEFF_SET[2:0] FILTER1_RATE[2:0] X ODD_TAP1 X USE_
FILTER1
30 X HPF_EN_
CH2
HPF_CORNER _CH2[3:0] FILTER2_COEFF_SET[2:0] FILTER2_RATE[2:0] X ODD_TAP2 X USE_
FILTER2
33 X HPF_EN_
CH3
HPF_CORNER _CH3[3:0] FILTER3_COEFF_SET[2:0] FILTER3_RATE[2:0] X ODD_TAP3 X USE_
FILTER3
35 X HPF_EN_
CH4
HPF_CORNER _CH4[3:0] FILTER4_COEFF_SET[2:0] FILTER4_RATE[2:0] X ODD_TAP4 X USE_
FILTER4
38 X X X X X X X X X X X X X X DATA_RATE[1:0]
42 EN_REF_
VCM0
X X X X X X X X PHASE_DDR[1:0] X EN_REF_
VCM1
X X X
45 X X X X X X X X X X X X X X PAT_SYNC PAT_
DESKEW
46 ENABLE 46 X FALL_SDR X EN_16BIT EN_14BIT EN_12BIT X X X X EN_SDR MSB_
FIRST
BTC_
MODE
X EN_2LANE
50 ENABLE 50 X X X X X X X MAP_CH12_TO_OUT1B[3:0] MAP_CH12_TO_OUT1A[3:0]
51 ENABLE 51 X X X MAP_CH12_TO_OUT2B[3:0] MAP_CH12_TO_OUT2A[3:0] X X X X
53 ENABLE 53 X X X MAP_CH34_TO_OUT3B[3:0] X X X X X X X X
54 ENABLE 54 X X X X X X X X X X X MAP_CH34_TO_OUT3A[3:0]
55 ENABLE 55 X X X X X X X MAP_CH34_TO_OUT4A[3:0] MAP_CH34_TO_OUT4B[3:0]
F0 EN_EXT_
REF
X X X X X X X X X X X X X X X
X = don't care.

Serial Registers

Register 00h (offset = 00h) [reset = 0]

This is a general register.

Figure 50. Register 00h
D15 D14 D13 D12 D11 D10 D9 D8
X
W-0
D7 D6 D5 D4 D3 D2 D1 D0
X RST
W-0 W-0

Table 7. Register 00h Field Descriptions

Bit Field Type Reset Description
D15-D1 X W 0 Don't care bits
D0 RST W 0

Reset

0 = Normal operation (default)

1 = Self-clearing software reset (after reset, this bit is set to 0)

Register 01h (offset = 01h) [reset = 0]

This is a general register.

Figure 51. Register 01h
D15 D14 D13 D12 D11 D10 D9 D8
X
W-0
D7 D6 D5 D4 D3 D2 D1 D0
X EN_HIGH_ADDRS X READOUT
W-0 W-0 W-0 W-0

Table 8. Register 01h Field Descriptions

Bit Field Type Reset Description
D15-D5 X W 0 Don't care bits
D4 EN_HIGH_ADDRS W 0

Register F0h access

0 = Disables access to register F0h (default)

1 = Enables access to register F0h

D3-D1 X W 0 Don't care bits
D0 READOUT W 0

Register mode readout

0 = Normal operation (default)

1 = Register mode readout

Register 02h (offset = 02h) [reset = 0]

This is a general register.

Figure 52. Register 02h
D15 D14 D13 D12 D11 D10 D9 D8
X EN_SYNC X
R/W-0 R/W-0 R/W-0
D7 D6 D5 D4 D3 D2 D1 D0
X
R/W-0

Table 9. Register 02h Field Descriptions

Bit Field Type Reset Description
D15-D14 X R/W 0 Don't care bits
D13 EN_SYNC R/W 0

SYNC enable(1)

0 = Normal operation; SYNC feature disabled (default)

1 = SYNC feature enabled to synchronize test patterns

D12-D0 X R/W 0 Don't care bits
This bit must be set to 1 when the software or hardware SYNC feature is used; see bits D15 and D8 in the Register 25h (offset = 25h) [reset = 0] section.

Register 0Ah (offset = 0Ah) [reset = 0]

This is a general register.

Figure 53. Register 0Ah
D15 D14 D13 D12 D11 D10 D9 D8
RAMP_PAT_RESET_VAL
R/W-0
D7 D6 D5 D4 D3 D2 D1 D0
RAMP_PAT_RESET_VAL
R/W-0

Table 10. Register 0Ah Field Descriptions

Bit Field Type Reset Description
D15-D0 RAMP_PAT_RESET_VAL R/W 0 These bits determine the initial value of the ramp pattern after reset.

Register 0Fh (offset = 0Fh) [reset = 0]

This is a power-down mode register. All bits default to 0 after reset.

Figure 54. Register 0Fh
D15 D14 D13 D12 D11 D10 D9 D8
X PDN_PIN_CFG PDN_ COMPLETE PDN_PARTIAL
R/W-0 R/W-0 R/W-0 R/W-0
D7 D6 D5 D4 D3 D2 D1 D0
PDN_CH4 X PDN_CH3 X PDN_CH2 X PDN_CH1
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

Table 11. Register 0Fh Field Descriptions

Bit Field Type Reset Description
D15-D11 X R/W 0 Don't care bits
D10 PDN_PIN_CFG R/W 0

PD pin configuration

0 = PD pin configured for complete power-down mode

1 = PD pin configured for partial power-down mode

D9 PDN_ COMPLETE R/W 0

Complete power-down

0 = Normal operation

1 = Register mode for complete power-down (slower recovery)

D8 PDN_PARTIAL R/W 0

Partial power-down

0 = Normal operation

1 = Partial power-down mode (fast recovery from power-down)

D7 PDN_CH4 R/W 0

ADC power-down mode for channel 4

0 = Normal operation

1 = Partial power-down mode (fast recovery from power-down)

D6 X R/W 0 Don't care bit
D5 PDN_CH3 R/W 0

ADC power-down mode for channel 3

0 = Normal operation

1 = ADC power-down mode for channel 3

D4-D3 X R/W 0 Don't care bits
D2 PDN_CH2 R/W 0

ADC power-down mode for channel 2

0 = Normal operation

1 = ADC power-down mode for channel 2

D1 X R/W 0 Don't care bit
D0 PDN_CH1 R/W 0

ADC power-down mode for channel 1

0 = Normal operation

1 = ADC power-down mode for channel 1

Register 14h (offset = 14h) [reset = 0]

This is a general register.

Figure 55. Register 14h
D15 D14 D13 D12 D11 D10 D9 D8
X
R/W-0
D7 D6 D5 D4 D3 D2 D1 D0
LFNS_CH4 X LFNS_CH3 X LFNS_CH2 X LFNS_CH1
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

Table 12. Register 14h Field Descriptions

Bit Field Type Reset Description
D15-D8 X R/W 0 Don't care bits
D7 LFNS_CH4 R/W 0

Noise-suppression mode selection for channel 4

0 = LFNS disabled (default)

1 = Low-frequency noise-suppression mode enable for channel 4

D6 X R/W 0 Don't care bit
D5 LFNS_CH3 R/W 0

Noise-suppression mode selection for channel 3

0 = LFNS disabled (default)

1 = Low-frequency noise-suppression mode enable for channel 3

D4-D3 X R/W 0 Don't care bits
D2 LFNS_CH2 R/W 0

Noise-suppression mode selection for channel 2

0 = LFNS disabled (default)

1 = Low-frequency noise-suppression mode enable for channel 2

D1 X R/W 0 Don't care bit
D0 LFNS_CH1 R/W 0

Noise-suppression mode selection for channel 1

0 = LFNS disabled (default)

1 = Low-frequency noise-suppression mode enable for channel 1

Register 1Ch (offset = 1Ch) [reset = 0]

This is a test pattern register. All bits default to 0 after reset.

Figure 56. Register 1Ch
D15 D14 D13 D12 D11 D10 D9 D8
X EN_FRAME_PAT ADCLKOUT[11:0]
R/W-0 R/W-0 R/W-0
D7 D6 D5 D4 D3 D2 D1 D0
ADCLKOUT[11:0] X
R/W-0 R/W-0

Table 13. Register 1Ch Field Descriptions

Bit Field Type Reset Description
D15 X R/W 0 Don't care bit
D14 EN_FRAME_PAT R/W 0

Frame pattern enable

0 = Normal frame clock operation

1 = Enables the output frame clock to be programmed through a pattern

D13-D2 ADCLKOUT[11:0] R/W 0

ADCLK pin frame clock pattern

These bits determine the 12-bit pattern for the frame clock on the ADCLKP and ADCLKN pins.

D1-D0 X R/W 0 Don't care bits

Register 23h (offset = 23h) [reset = 0]

This is a test pattern register.

Figure 57. Register 23h
D15 D14 D13 D12 D11 D10 D9 D8
PRBS_SEED[15:0]
R/W-0
D7 D6 D5 D4 D3 D2 D1 D0
PRBS_SEED[15:0]
R/W-0

Table 14. Register 23h Field Descriptions

Bit Field Type Reset Description
D15-D0 PRBS_SEED[15:0] R/W 0

PRBS pattern seed value, lower bits

These bits determine the PRBS pattern starting seed value of the lower 16 bits. (Default = 0)

Register 24h (offset = 24h) [reset = 0]

This is a test pattern register. All bits default to 0 after reset.

Figure 58. Register 24h
D15 D14 D13 D12 D11 D10 D9 D8
PRBS_SEED[22:16] X
R/W-0 R/W-0
D7 D6 D5 D4 D3 D2 D1 D0
INVERT_CH4 X INVERT_CH3 X INVERT_CH2 X INVERT_CH1
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

Table 15. Register 24h Field Descriptions

Bit Field Type Reset Description
D15-D9 PRBS_SEED[22:16] R/W 0

PRBS pattern seed value, upper bits

These bits determine the PRBS pattern starting seed value of the upper seven bits.

D8 X R/W 0 Don't care bit
D7 INVERT_CH4 R/W 0

Analog input pin polarity for channel 4

0 = Normal configuration (default)

1 = Electrically swaps the analog input pin polarity for channel 4

D6 X R/W 0 Don't care bit
D5 INVERT_CH3 R/W 0

Analog input pin polarity for channel 3

0 = Normal configuration (default)

1 = Electrically swaps the analog input pin polarity for channel 3

D4-D3 X R/W 0 Don't care bits
D2 INVERT_CH2 R/W 0

Analog input pin polarity for channel 2

0 = Normal configuration (default)

1 = Electrically swaps the analog input pin polarity for channel 2

D1 X R/W 0 Don't care bit
D0 INVERT_CH1 R/W 0

Analog input pin polarity for channel 1

0 = Normal configuration (default)

1 = Electrically swaps the analog input pin polarity for channel 1

Register 25h (offset = 25h) [reset = 0]

This is a test pattern register. All bits default to 0 after reset.

Figure 59. Register 25h
D15 D14 D13 D12 D11 D10 D9 D8
HARD_SYNC_TP PRBS_SEED_FROM_REG PRBS_MODE_2 PRBS_TP_EN X TP_SOFT_SYNC
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
D7 D6 D5 D4 D3 D2 D1 D0
X EN_RAMP DUAL_CUSTOM_PAT SINGLE_CUSTOM_PAT BITS_CUSTOM2[13:12] BITS_CUSTOM1[13:12]
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

Table 16. Register 25h Field Descriptions

Bit Field Type Reset Description
D15 HARD_SYNC_TP R/W 0

Sync test pattern selection

0 = Inactive

1 = External SYNC feature enabled for syncing test patterns

D14 PRBS_SEED_FROM_REG R/W 0

PRBS seed selection

0 = Disabled

1 = Selection of PRBS seed from registers 23h and 24h enabled

D13 PRBS_MODE_2 R/W 0

PRBS mode selection

This bit sets the PRBS mode of the 9-bit LFSR (the 23-bit LFSR is default).

D12 PRBS_TP_EN R/W 0

PRBS test pattern selection

0 = PRBS test pattern disabled

1 = PRBS test pattern enable bit

D11-D9 X R/W 0 Don't care bits
D8 TP_SOFT_SYNC R/W 0

Test pattern software sync

0 = No sync

1 = Software sync bit for test patterns on all eight channels

D7 X R/W 0 Don't care bit
D6 EN_RAMP R/W 0

Ramp pattern enable

0 = Normal operation

1 = Enables a repeating full-scale ramp pattern on the outputs. Ensure that bits D4 and D5 are 0.

D5 DUAL_CUSTOM_PAT R/W 0

Output toggles between two codes

0 = Normal operation

1 = Enables mode where the output toggles between two defined codes. Ensure that bits D4 and D6 are 0.

D4 SINGLE_CUSTOM_PAT R/W 0

Output is defined code

0 = Normal operation

1 = Enables mode where the output is a constant specified code. Ensure that bits D5 and D6 are 0.

D3-D2 BITS_CUSTOM2[13:12] R/W 0

MSB selection for dual patterns

These bits determine two MSBs for the second code of the dual custom patterns.

D1-D0 BITS_CUSTOM1[13:12] R/W 0

MSB selection for single patterns

These bits define two MSBs for the single custom pattern (and for the first code of the dual custom patterns).

Register 26h (offset = 26h) [reset = 0]

This is a test pattern register.

Figure 60. Register 26h
D15 D14 D13 D12 D11 D10 D9 D8
BITS_CUSTOM1[9:0]
R/W-0
D7 D6 D5 D4 D3 D2 D1 D0
BITS_CUSTOM1[9:0] X
R/W-0 R/W-0

Table 17. Register 26h Field Descriptions

Bit Field Type Reset Description
D15-D6 BITS_CUSTOM1[9:0] R/W 0

Lower single custom pattern bits

These bits determine the 10 lower bits for the single custom pattern (and the first code of the dual custom pattern).

D5-D0 X R/W 0 Don't care bits

Register 27h (offset = 27h) [reset = 0]

This is a test pattern register.

Figure 61. Register 27h
D15 D14 D13 D12 D11 D10 D9 D8
BITS_CUSTOM2[9:0]
R/W-0
D7 D6 D5 D4 D3 D2 D1 D0
BITS_CUSTOM2[9:0] X
R/W-0 R/W-0

Table 18. Register 27h Field Descriptions

Bit Field Type Reset Description
D15-D6 BITS_CUSTOM2[9:0] R/W 0 Lower dual custom pattern bits

These bits determine the 10 lower bits for the second code of the dual custom pattern.

D5-D0 X R/W 0 Don't care bits

Register 28h (offset = 28h) [reset = 0]

This is an output interface mode register. All bits default to 0 after reset.

Figure 62. Register 28h
D15 D14 D13 D12 D11 D10 D9 D8
EN_BITORDER X BIT_WISE
R/W-0 R/W-0 R/W-0
D7 D6 D5 D4 D3 D2 D1 D0
EN_WORDWISE_BY_CH[7:0]
R/W-0

Table 19. Register 28h Field Descriptions

Bit Field Type Reset Description
D15 EN_BITORDER R/W 0

Bit order enable(1)

This bit enables the bit order output in two-lane mode.

0 = Byte-wise

1 = Word-wise

D14-D9 X R/W 0 Don't care bit
D8 BIT_WISE R/W 0

Bit- or byte-wise selection

This bit selects between byte-wise and bit-wise format.

0 = Byte-wise, the upper bits come are on one lane and the lower bits are on other lane

1 = Bit-wise, the odd bits come out on one lane and the even bits come out on other lane

D7-D0 EN_WORDWISE_BY_CH[7:0] R/W 0

Word-wise enable with channels 7 to 0

0 = Data comes out in two-lane mode with the upper set of bits on one channel and the lower set of bits on the other channel

1 = Output format is one sample on one LVDS lane with the next sample on the other LVDS lane

This bit must set 1 to enable bits D[8:0].

Register 29h (offset = 29h) [reset = 0]

This is a digital filter mode register. All bits default to 0 after reset.

Figure 63. Register 29h
D15 D14 D13 D12 D11 D10 D9 D8
X
R/W-0
D7 D6 D5 D4 D3 D2 D1 D0
X GLOBAL_EN_FILTER X
R/W-0 R/W-0 R/W-0

Table 20. Register 29h Field Descriptions

Bit Field Type Reset Description
D15-D2 X R/W 0 Don't care bits
D1 GLOBAL_EN_FILTER R/W 0

Filter block enable

0 = Inactive

1 = Global control filter blocks enabled

D0 X R/W 0 Don't care bit

Register 2Ah (offset = 2Ah) [reset = 0]

This is a digital gain mode register. All bits default to 0 after reset.

Figure 64. Register 2Ah
D15 D14 D13 D12 D11 D10 D9 D8
X GAIN_CH2[3:0]
R/W-0 R/W-0
D7 D6 D5 D4 D3 D2 D1 D0
X GAIN_CH1[3:0]
R/W-0 R/W-0

Table 21. Register 2Ah Field Descriptions

Bit Field Type Reset Description
D15-D12 X R/W 0 Don't care bits
D11-D8 GAIN_CH2[3:0] R/W 0

Channel 2 gain

These bits set the programmable gain of channel 2

D7-D4 X R/W 0 Don't care bits
D3-D0 GAIN_CH3[3:0] R/W 0

Channel 1 gain

These bits set the programmable gain of channel 1

Register 2Bh (offset = 2Bh) [reset = 0]

This is a digital gain mode register. All bits default to 0 after reset.

Figure 65. Register 2Bh
D15 D14 D13 D12 D11 D10 D9 D8
X GAIN_CH3[3:0]
R/W-0 R/W-0
D7 D6 D5 D4 D3 D2 D1 D0
X GAIN_CH4[3:0]
R/W-0 R/W-0

Table 22. Register 2Bh Field Descriptions

Bit Field Type Reset Description
D15-D12 X R/W 0 Don't care bits
D11-D8 GAIN_CH3[3:0] R/W 0

Channel 3 gain

These bits set the programmable gain of channel 3

D7-D4 X R/W 0 Don't care bits
D3-D0 GAIN_CH4[3:0] R/W 0

Channel 4 gain

These bits set the programmable gain of channel 4

Register 2Eh (offset = 2Eh) [reset = 0]

This is a digital filter mode register. All bits default to 0 after reset.

Figure 66. Register 2Eh
D15 D14 D13 D12 D11 D10 D9 D8
X HPF_EN_CH1 HPF_CORNER _CH1[3:0] FILTER1_COEFF_SET[2:0]
R/W-0 R/W-0 R/W-0 R/W-0
D7 D6 D5 D4 D3 D2 D1 D0
FILTER1_COEFF_SET[2:0] FILTER1_RATE[2:0] X ODD_TAP1 X USE_FILTER1
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

Table 23. Register 2Eh Field Descriptions

Bit Field Type Reset Description
D15 X R/W 0 Don't care bit
D14 HPF_EN_CH1 R/W 0

Channel 1 HPF filter enable

0 = Disabled

1 = HPF filter enable for channel 1

D13-D10 HPF_CORNER _CH1[3:0] R/W 0

HPF corner for channel 1

These bits set the HPF corner in values from 2k to 10k.

D9-D7 FILTER1_COEFF_SET[2:0] R/W 0

Filter 1 coefficient set

These bits select the stored coefficient set for filter 1.

D6-D4 FILTER1_RATE[2:0] R/W 0

Filter 1 decimation factor

These bits set the decimation factor for filter 2.

D3 X R/W 0 Don't care bit
D2 ODD_TAP1 R/W 0

Filter 1 odd tap

This bit uses odd tap filter 1.

D1 X R/W 0 Don't care bit
D0 USE_FILTER1 R/W 0

Channel 1 filter

0 = Disabled

1 = Enables filter for channel 1

Register 30h (offset = 30h) [reset = 0]

This is a digital filter mode register. All bits default to 0 after reset.

Figure 67. Register 30h
D15 D14 D13 D12 D11 D10 D9 D8
X HPF_EN_CH2 HPF_CORNER _CH2[3:0] FILTER2_COEFF_SET[2:0]
R/W-0 R/W-0 R/W-0 R/W-0
D7 D6 D5 D4 D3 D2 D1 D0
FILTER2_COEFF_SET[2:0] FILTER2_RATE[2:0] X ODD_TAP2 X USE_FILTER2
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

Table 24. Register 30h Field Descriptions

Bit Field Type Reset Description
D15 X R/W 0 Don't care bit
D14 HPF_EN_CH2 R/W 0

Channel 2 HPF filter enable

0 = Disabled

1 = HPF filter enable for channel 2

D13-D10 HPF_CORNER _CH2[3:0] R/W 0

HPF corner for channel 2

These bits set the HPF corner in values from 2k to 10k.

D9-D7 FILTER2_COEFF_SET[2:0] R/W 0

Filter 2 coefficient set

These bits select the stored coefficient set for filter 2.

D6-D4 FILTER2_RATE[2:0] R/W 0

Filter 2 decimation factor

These bits set the decimation factor for filter 2.

D3 X R/W 0 Don't care bit
D2 ODD_TAP2 R/W 0

Filter 2 odd tap

This bit uses odd tap filter 2.

D1 X R/W 0 Don't care bit
D0 USE_FILTER2 R/W 0

Channel 2 filter

0 = Disabled

1 = Enables filter for channel 2

Register 33h (offset = 33h) [reset = 0]

This is a digital filter mode register. All bits default to 0 after reset.

Figure 68. Register 33h
D15 D14 D13 D12 D11 D10 D9 D8
X HPF_EN_CH3 HPF_CORNER _CH3[3:0] FILTER3_COEFF_SET[2:0]
R/W-0 R/W-0 R/W-0 R/W-0
D7 D6 D5 D4 D3 D2 D1 D0
FILTER3_COEFF_SET[2:0] FILTER3_RATE[2:0] X ODD_TAP3 USE_FILTER3
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

Table 25. Register 33h Field Descriptions

Bit Field Type Reset Description
D15 X R/W 0 Don't care bit
D14 HPF_EN_CH3 R/W 0

Channel 3 HPF filter enable

0 = Disabled

1 = HPF filter enable for channel 3

D13-D10 HPF_CORNER _CH3[3:0] R/W 0

HPF corner for channel 3

These bits set the HPF corner in values from 2k to 10k.

D9-D7 FILTER3_COEFF_SET[2:0] R/W 0

Filter 3 coefficient set

These bits select the stored coefficient set for filter 3.

D6-D4 FILTER3_RATE[2:0] R/W 0

Filter 3 decimation factor

These bits set the decimation factor for filter 3.

D3 X R/W 0 Don't care bit
D2 ODD_TAP3 R/W 0

Filter 3 odd tap

This bit uses odd tap filter 3.

D1 X R/W 0 Don't care bit
D0 USE_FILTER3 R/W 0

Channel 3 filter

0 = Disabled

1 = Enables filter for channel 3

Register 35h (offset = 35h) [reset = 0]

This is a digital filter mode register. All bits default to 0 after reset.

Figure 69. Register 35h
D15 D14 D13 D12 D11 D10 D9 D8
X HPF_EN_CH4 HPF_CORNER _CH4[3:0] FILTER4_COEFF_SET[2:0]
R/W-0 R/W-0 R/W-0 R/W-0
D7 D6 D5 D4 D3 D2 D1 D0
FILTER4_COEFF_SET[2:0] FILTER4_RATE[2:0] X ODD_TAP4 X USE_FILTER4
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

Table 26. Register 35h Field Descriptions

Bit Field Type Reset Description
D15 X R/W 0 Don't care bit
D14 HPF_EN_CH4 R/W 0

Channel 4 HPF filter enable

0 = Disabled

1 = HPF filter enable for channel 4

D13-D10 HPF_CORNER _CH4[3:0] R/W 0

HPF corner for channel 4

These bits set the HPF corner in values from 2k to 10k.

D9-D7 FILTER4_COEFF_SET[2:0] R/W 0

Filter 4 coefficient set

These bits select the stored coefficient set for filter 4.

D6-D4 FILTER4_RATE[2:0] R/W 0

Filter 4 decimation factor

These bits set the decimation factor for filter 4.

D3 X R/W 0 Don't care bit
D2 ODD_TAP4 R/W 0

Filter 4 odd tap

This bit uses odd tap filter 4.

D1 X R/W 0 Don't care bit
D0 USE_FILTER4 R/W 0

Channel 4 filter

0 = Disabled

1 = Enables filter for channel 4

Register 38h (offset = 38h) [reset = 0x0000]

This is an output interface mode register.

Figure 70. Register 38h
D15 D14 D13 D12 D11 D10 D9 D8
X
R/W-
D7 D6 D5 D4 D3 D2 D1 D0
X DATA_RATE[1:0]
R/W- R/W-

Table 27. Register 38h Field Descriptions

Bit Field Type Reset Description
D15-D2 X R/W 0 Don't care bits
D1-D0 DATA_RATE[1:0] R/W 0

Clock rate selection

These bits select the output frame clock rate. (Default = 0)

Register 42h (offset = 42h) [reset = 0]

This is an output interface mode register.

Figure 71. Register 42h
D15 D14 D13 D12 D11 D10 D9 D8
EN_REF_VCM0 X
R/W-0 R/W-0
D7 D6 D5 D4 D3 D2 D1 D0
X PHASE_DDR[1:0] X EN_REF_VCM1 X
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

Table 28. Register 42h Field Descriptions

Bit Field Type Reset Description
D15 EN_REF_VCM0 R/W 0

To enable the external reference mode, the EN_EXT_REF register bit (register F0h) must be set to 1.

00 = In external reference mode, apply the reference on the REFT, REFB pins

01, 10 = Don't use

11 = In external reference mode, apply the reference on the VCM pin

D14-D7 X R/W 0 Don't care bits
D6-D5 PHASE_DDR[1:0] R/W 0 These bits control the LCLK output phase relative to data. (Default = 10)
D4 X R/W 0 Don't care bit
D3 EN_REF_VCM1 R/W 0

To enable the external reference mode, the EN_EXT_REF register bit (register F0h) must be set to 1.

00 = In external reference mode, apply the reference on the REFT, REFB pins

01, 10 = Don't use

11 = In external reference mode, apply the reference on the VCM pin

D2-D0 X R/W 0 Don't care bits

Register 45h (offset = 45h) [reset = 0]

This is a test pattern register. All bits default to 0 after reset.

Figure 72. Register 45h
D15 D14 D13 D12 D11 D10 D9 D8
X
R/W-0
D7 D6 D5 D4 D3 D2 D1 D0
X PAT_SYNC PAT_DESKEW
R/W-0 R/W-0 R/W-0

Table 29. Register 45h Field Descriptions

Bit Field Type Reset Description
D15-D2 X R/W 0 Don't care bits
D1 PAT_SYNC R/W 0

Sync pattern enable

0 = Inactive

1 = Sync pattern mode enabled; ensure that D0 is 0

D0 PAT_DESKEW R/W 0

Deskew pattern enable

0 = Inactive

1 = Deskew pattern mode enabled; ensure that D1 is 0

Register 46h (offset = 46h) [reset = 0]

This is an output interface mode register. All bits default to 0 after reset.

Figure 73. Register 46h
D15 D14 D13 D12 D11 D10 D9 D8
ENABLE 46 X FALL_SDR X EN_16BIT EN_14BIT EN_12BIT X
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
D7 D6 D5 D4 D3 D2 D1 D0
X EN_SDR MSB_FIRST BTC_MODE X EN_2LANE
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

Table 30. Register 46h Field Descriptions

Bit Field Type Reset Description
D15 ENABLE 46 R/W 0

Enable register 46(1)

This bit enables register 46.

D14 X R/W 0 Don't care bit
D13 FALL_SDR R/W 0

SDR output mode

0 = At data window edge

1 = The LCLK rising or falling edge control comes in the middle of the data window when operating in SDR output mode

D12 X R/W 0 Don't care bit
D11 EN_16BIT R/W 0

16-bit mode enable

0 = Inactive

1 = 16-bit serialization mode enabled; ensure bits D[10:9] are 0

D10 EN_14BIT R/W 0

14-bit mode enable

0 = Inactive

1 = 14-bit serialization mode enabled; ensure bits D11 and D9 are 0

D9 EN_12BIT R/W 0

12-bit mode enable

0 = Inactive

1 = 12-bit serialization mode enabled; ensure bits D[11:10] are 0

D8-D5 X R/W 0 Don't care bits
D4 EN_SDR R/W 0

Bit clock selection

0 = DDR bit clock

1 = SDR bit clock

D3 MSB_FIRST R/W 0

MSB first selection

0 = LSB first

1 = MSB first

D2 BTC_MODE R/W 0

Binary mode selection

0 = Binary offset (ADC data output format)

1 = Binary twos complement (ADC data output format)

D1 X R/W 0 Don't care bit
D0 EN_2LANE R/W 0

LVDS output lane selection

0 = One-lane LVDS output

1 = Two-lane LVDS output

This bit must be set to 1 to enable bits D[13:0].

Register 50h (offset = 50h) [reset = 0]

This is a programmable LVDS mapping mode register. All bits default to 0 after reset.

Figure 74. Register 50h
D15 D14 D13 D12 D11 D10 D9 D8
ENABLE 50 X
R/W-0 R/W-0
D7 D6 D5 D4 D3 D2 D1 D0
MAP_CH12_TO_OUT1B[3:0] MAP_CH12_TO_OUT1A[3:0]
R/W-0 R/W-0

Table 31. Register 50h Field Descriptions

Bit Field Type Reset Description
D15 ENABLE 50 R/W 0

Enable for register 50h(1)

This bit enables register 50h.

D14-D8 X R/W 0 Don't care bits
D7-D4 MAP_CH12_TO_OUT1B[3:0] R/W 0

OUT1B pin to channel mapping

These bits select the OUT1B pin pair to channel data mapping.

D3-D0 MAP_CH12_TO_OUT1A[3:0] R/W 0

OUT1A pin to channel mapping

These bits select the OUT1A pin pair to channel data mapping.

This bit must be set to 1 to enable bits D[7:0].

Register 51h (offset = 51h) [reset = 0]

This is a programmable LVDS mapping mode register. All bits default to 0 after reset.

Figure 75. Register 51h
D15 D14 D13 D12 D11 D10 D9 D8
ENABLE 51 X MAP_CH12_TO_OUT2B[3:0]
R/W-0 R/W-0 R/W-0
D7 D6 D5 D4 D3 D2 D1 D0
MAP_CH12_TO_OUT2A[3:0] X
R/W-0 R/W-0

Table 32. Register 51h Field Descriptions

Bit Field Type Reset Description
D15 ENABLE 51 R/W 0

Enable for register 51h(1)

This bit enables register 51h.

D14-D12 X R/W 0 Don't care bits
D11-D8 MAP_CH12_TO_OUT2B[3:0] R/W 0

OUT2B pin to channel mapping

These bits select the OUT2B pin pair to channel data mapping.

D7-D4 MAP_CH12_TO_OUT2A[3:0] R/W 0

OUT2A pin to channel mapping

These bits select the OUT2A pin pair to channel data mapping.

D3-D0 X R/W 0 Don't care bits
This bit must be set to 1 to enable bits D[7:0].

Register 53h (offset = 53h) [reset = 0]

This is a programmable LVDS mapping mode register. All bits default to 0 after reset.

Figure 76. Register 53h
D15 D14 D13 D12 D11 D10 D9 D8
ENABLE 53 X MAP_CH34_TO_OUT3B[3:0]
R/W-0 R/W-0 R/W-0
D7 D6 D5 D4 D3 D2 D1 D0
X
R/W-0

Table 33. Register 53h Field Descriptions

Bit Field Type Reset Description
D15 ENABLE 53 R/W 0

Enable register 53h(1)

This bit enables register 53h.

D14-D12 X R/W 0 Don't care bits
D11-D8 MAP_CH34_TO_OUT3B[3:0] R/W 0

OUT3B pin to channel mapping

These bits select the OUT3B pin pair to channel data mapping.

D7-D0 X R/W 0 Don't care bits
This bit must be set to 1 to enable bits D[7:0].

Register 54h (offset = ) [reset = 0]

This is a programmable LVDS mapping mode register. All bits default to 0 after reset.

Figure 77. Register 54h
D15 D14 D13 D12 D11 D10 D9 D8
ENABLE 54 X
R/W-0 R/W-0
D7 D6 D5 D4 D3 D2 D1 D0
X MAP_Ch34_to_OUT3A[3:0]
R/W-0 R/W-0

Table 34. Register 54h Field Descriptions

Bit Field Type Reset Description
D15 ENABLE 54 R/W 0

Enable register 54h(1)

This bit enables register 54h.

D14-D4 X R/W 0 Don't care bits
D3-D0 MAP_Ch34_to_OUT3A[3:0] R/W 0

OUT3A pin to channel mapping

These bits select the OUT3A pin pair to channel data mapping.

This bit must be set to 1 to enable bits D[7:0].

Register 55h (offset = 55h) [reset = 0]

This is a programmable LVDS mapping mode register. All bits default to 0 after reset.

Figure 78. Register 55h
D15 D14 D13 D12 D11 D10 D9 D8
ENABLE 55 X
R/W-0 R/W-0
D7 D6 D5 D4 D3 D2 D1 D0
MAP_CH34_TO_OUT4A[3:0] MAP_CH34_TO_OUT4B[3:0]
R/W-0 R/W-0

Table 35. Register 55h Field Descriptions

Bit Field Type Reset Description
D15 ENABLE 55 R/W 0

Enable register 55h(1)

This bit enables register 55h.

D14-D8 X R/W 0 Don't care bits
D7-D4 MAP_CH34_TO_OUT4A[3:0] R/W 0

OUT4A pin to channel mapping

These bits select the OUT4A pin pair to channel data mapping.

D3-D0 MAP_CH34_TO_OUT4B[3:0] R/W 0

OUT4B pin to channel mapping

These bits select the OUT4B pin pair to channel data mapping.

This bit must be set to 1 to enable bits D[7:0].

Register F0h (offset = F0h) [reset = 0]

This is a general register.

NOTE

The EN_HIGH_ADDRS bit (register 01h, bit D4) must be set to 1 in order to access this register.

Figure 79. Register F0h
D15 D14 D13 D12 D11 D10 D9 D8
EN_EXT_REF X
R/W-0 R/W-0
D7 D6 D5 D4 D3 D2 D1 D0
X
R/W-0

Table 36. Register F0h Field Descriptions

Bit Field Type Reset Description
D15 EN_EXT_REF R/W 0

Reference mode selection

0 = Internal reference mode enabled (default)

1 = External reference mode enabled. The voltage reference can be applied on either the REFP and REFB pins or the VCM pin.

D7-D0 X R/W 0 Don't care bits