SNVS542E May   2008  – June 2016 LP8900

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Default Device Options
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Requirements
    7. 7.7 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Enable Control
    4. 8.4 Device Functional Modes
      1. 8.4.1 Enable (EN)
      2. 8.4.2 Minimum Operating Input Voltage (VIN)
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 External Capacitors
        2. 9.2.2.2 Input Capacitor
        3. 9.2.2.3 Output Capacitor
        4. 9.2.2.4 No-Load Stability
        5. 9.2.2.5 Capacitor Characteristics
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
    3. 11.3 DSBGA Mounting
    4. 11.4 DSBGA Light Sensitivity
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 Community Resources
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)(2)
MIN MAX UNIT
IN, OUT pins: Voltage to GND –0.3 6.5 V
EN pin: Voltage to GND –0.3 to (VIN + 0.3V) 6.5 °C
Continuous power dissipation(3) Internally limited
Junction temperature 150 °C
Storage temperature, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltages are with respect to the potential at the GND pin.
(3) Internal thermal shutdown circuitry protects the device from permanent damage.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±200
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1)
MIN NOM MAX UNIT
Input voltage 1.8 5.5 V
Recommended load current per channel 200 mA
Junction temperature, TJ –40 125 °C
Ambient temperature, TA(2) –40 85 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) The maximum ambient temperature (TA(MAX)) is dependant on the maximum operating junction temperature (TJ(MAX-OP) = 125°C), the maximum power dissipation of the device in the application (PD(MAX)), and the junction to ambient thermal resistance of the part / package in the application (RθJA), as given by: TA(MAX) = TJ(MAX-OP) – (RθJA × PD(MAX)).

7.4 Thermal Information

THERMAL METRIC(1) LP8900 UNIT
YZR (DSBGA)
6 PINS
RθJA Junction-to-ambient thermal resistance 140.0 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 1.0 °C/W
RθJB Junction-to-board thermal resistance 26.0 °C/W
ψJT Junction-to-top characterization parameter 0.3 °C/W
ψJB Junction-to-board characterization parameter 26.0 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics

Unless otherwise noted, VEN = 1.2 V, VIN = VOUT + 0.5 V, or 1.8 V, whichever is higher (where VOUT is the higher of VOUT1 and VOUT2), CIN = COUT = 1 µF, and IOUT = 1 mA. Typical values apply for TA = 25°C; minimum and maximum values apply over the full junction temperature range for operation, −40 to +125°C, unless otherwise specified.(1)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIN Input voltage TA = 25°C, see(2) 1.8 5.5 V
ΔVOUT Output voltage tolerance VIN = VOUT(NOM) + 0.5 V to 5.5 V
ILOAD = 1 mA
1% 1%
VIN = 1.8 V to 5.5 V
ILOAD = 1 mA, VOUT = 1.2 V
–2.25% 2.25%
Line regulation error VIN = VOUT(NOM) + 0.5 V to 5.5 V
IOUT = 1 mA
0.05 %/V
Load regulation error IOUT = 1 mA to 200 mA 4 9 mV
VDO Dropout voltage(3) IOUT = 200 mA VOUT = 3.6 V 55 82 mV
VOUT = 2.8 V 110 164
VOUT = 1.8 V 185 260
ILOAD Load current TA = 25°C, see(4) 0 mA
See(4) 200
IQ Quiescent current VEN1 = 1.2 V, VEN2 = 0 V, IOUT = 0 mA 48 120 µA
VEN1 = 1.2 V, VEN2 = 1.2 V, IOUT = 0 mA 85 200
VEN1 = 1.2 V, VEN2 = 1.2 V, IOUT = 200 mA 210
VEN ≤ 0.4 V 0.003 1
ISC Short-circuit current limit VIN = 3.6 V(5) 600 900 mA
PSRR Power supply rejection ratio(6) ƒ = 1 kHz, IOUT = 200 mA 75 dB
ƒ = 10 kHz, IOUT = 200 mA 65
ƒ = 100 kHz, IOUT = 200 mA 45
ƒ = 1 MHz, IOUT = 200 mA 30
en Output noise voltage(6) BW = 10 Hz to 100 kHz,
VIN = 4.2 V, COUT = 1 µF
IOUT = 0 mA 6 µVRMS
IOUT = 1 mA 10
IOUT = 200 mA 6
TSHUTDOWN Thermal shutdown Temperature 155 °C
Hysteresis 15
ENABLE CONTROL CHARACTERISTICS
IEN Maximum input current at EN input(7) VEN = 0 V, VIN = 5.5 V 0.003 µA
VEN = VIN = 5.5 V 4
VIL Low input threshold VIN = 1.8 V to 5.5 V 0.4 V
VIH High input threshold VIN = 1.8 V to 5.5 V 1.2 V
TRANSIENT CHARACTERISTICS
Line transient response |δVOUT| Trise = Tfall = 30 µs
δVIN = 600 mV
1 mV
(pk - pk)
Transient response Load transient response |δVOUT| Trise = Tfall = 1 µs IOUT = 1 mA to 200 mA 80 mV
IOUT = 200 mA to 1 mA 70
Overshoot on start-up 0% 1%
(1) All limits are specified. All electrical characteristics having room-temperature limits are tested during production at TJ = 25°C or correlated using Statistical Quality Control methods. Operation over the temperature specification is ensured by correlating the electrical characteristics to process and temperature variations and applying statistical process control.
(2) The minimum input voltage = VOUT(NOM) + 0.5 V or 1.8 V, whichever is greater.
(3) Dropout voltage is voltage difference between input and output at which the output voltage drops to 100 mV below its nominal value. This parameter is only specified for output voltages above 1.8 V.
(4) The device maintains the regulated output voltage without a load.
(5) Short circuit current is measured with VOUT pulled to 0 V.
(6) This electrical specification is ensured by design.
(7) EN Pin has an internal 3-MΩ typical, resistor connected to GND.

7.6 Timing Requirements

Nominal values apply for TA = 25°C; minimim and maximum values apply over the full junction temperature range for operation, −40 to +125°C, unless otherwise specified.
MIN NOM MAX UNIT
TON Turnon time to 95% level, VOUT(NOM) 80 200 µs
TOFF Turnoff Time, 5% of VOUT(NOM), IOUT = 0 mA 0.4 1 ms

7.7 Typical Characteristics

Unless otherwise specified, CIN = COUT = 1 µF ceramic, VIN = VOUT(NOM) + 1 V or 1.8 V, whichever is greater, TA = 25°C, VOUT(NOM) = 2.85 V, and the EN pin is tied to VIN.
LP8900 30039310.png Figure 1. Power Supply Rejection Ratio
LP8900 30039312.png Figure 3. Noise Density
LP8900 30039314.png Figure 5. Ground Current vs Load Current
LP8900 30039318.png Figure 7. Ground Current vs VIN
LP8900 30039328.png Figure 9. Dropout Voltage
LP8900 30039309.png Figure 2. Power Supply Rejection Ratio
LP8900 30039311.png Figure 4. Output Voltage Change vs Temperature
LP8900 30039315.png Figure 6. Ground Current vs Load Current
LP8900 30039322.png Figure 8. Short Circuit Current
LP8900 30039341.png Figure 10. Dropout Voltage vs Output Voltage