JAJSPL9 july   2023 TPS631012 , TPS631013

PRODMIX  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Revision History
  6. Device Comparison Table
  7. Pin Configuration and Functions
  8. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Rating
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics 
    6. 7.6 Timing Requirements
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Undervoltage Lockout (UVLO)
      2. 8.3.2 Enable and Soft Start
      3. 8.3.3 Device Enable (EN)
      4. 8.3.4 Output Voltage Control
      5. 8.3.5 Mode Selection (PFM/FPWM)
      6. 8.3.6 Output Discharge
      7. 8.3.7 Reverse Current Operation
      8. 8.3.8 Protection Features
        1. 8.3.8.1 Input Overvoltage Protection
        2. 8.3.8.2 Output Overvoltage Protection
        3. 8.3.8.3 Short Circuit Protection/Hiccup
        4. 8.3.8.4 Thermal Shutdown
    4. 8.4 Device Functional Modes
    5. 8.5 Programming
      1. 8.5.1 Serial Interface Description
      2. 8.5.2 Standard-, Fast-, and Fast-Mode Plus Protocol
      3. 8.5.3 I2C Update Sequence
    6. 8.6 Register Map
      1. 8.6.1 Register Description
        1. 8.6.1.1 Register Map
        2. 8.6.1.2 Register CONTROL1 (Register address: 0x02; Default: 0x08)
        3. 8.6.1.3 Register VOUT (Register address: 0x03; Default: 0x5C)
        4. 8.6.1.4 Register CONTROL2 (Register address: 0x05; Default: 0x45)
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Inductor Selection
        2. 9.2.2.2 Output Capacitor Selection
        3. 9.2.2.3 Input Capacitor Selection
        4. 9.2.2.4 Setting the Output Voltage
      3. 9.2.3 Application Curves
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 サード・パーティ製品に関する免責事項
    2. 10.2 ドキュメントの更新通知を受け取る方法
    3. 10.3 サポート・リソース
    4. 10.4 Trademarks
    5. 10.5 静電気放電に関する注意事項
    6. 10.6 用語集
  12. 11Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Inductor Selection

The inductor selection is affected by several parameters such as the following:

  • Inductor ripple current
  • Output voltage ripple
  • Transition point into power save mode
  • Efficiency

See Table 9-2 for typical inductors.

For high efficiencies, the inductor with a low DC resistance is needed to minimize conduction losses. Especially at high-switching frequencies, the core material has a high impact on efficiency. When using small chip inductors, the efficiency is reduced mainly due to higher inductor core losses. Core losses need to be considered when selecting the appropriate inductor. The inductor value determines the inductor ripple current. The larger the inductor value, the smaller the inductor ripple current and the lower the conduction losses of the converter. Conversely, larger inductor values cause a slower load transient response. To avoid saturation of the inductor, the peak current for the inductor in steady state operation is calculated using Equation 2. Only the equation that defines the switch current in boost mode is shown because this provides the highest value of current and represents the critical current value for selecting the right inductor.

Equation 1. GUID-82BD40D5-7533-4234-8C1A-AE4282EEF563-low.gif
Equation 2. GUID-24157B52-FFA2-4D1C-B486-9EA3D8BC6F32-low.gif

where:

  • D = duty cycle in boost mode
  • f = converter switching frequency (typical 2 MHz)
  • L = inductor value
  • η = estimated converter efficiency (use the number from the efficiency curves or 0.9 as an assumption)

Note:

The calculation must be done for the minimum input voltage in boost mode.

Calculating the maximum inductor current using the actual operating conditions gives the minimum saturation current of the inductor needed. It is recommended to choose an inductor with a saturation current 20% higher than the value calculated using Equation 2. Possible inductors are listed in Table 9-2.

Table 9-2 List of Recommended Inductors
INDUCTOR VALUE [µH]SATURATION CURRENT [A]DCR [mΩ]PART NUMBERMANUFACTURER(1)SIZE
(L × W × H mm)
14.342DFE252012P-1R0M=P2MuRata2.5 × 2.0 × 1.2
14.243HTEK20161T-1R0MSRCyntec2.0 × 1.6 × 1.0
12.275MAKK2016T1R0M (2)Taiyo Yuden2.0 × 1.6 × 1.0
12.0144DFE18SAN1R0ME0 (2)Murata1.6 × 0.8 × 0.8
This inductor does not support full output current range.