SLUAAL2 june   2023 UCC256402 , UCC256403 , UCC256404

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1UCC25640x Frequently Asked Questions
    1. 1.1  For the Time Domain Simulation and Fundamental Harmonic Analysis of LLC Resonant Converters, What Model of the Transformer Should be Used?
      1. 1.1.1 LLC Design Using T Type Transformer Model
    2. 1.2  How to Connect External Gate Drivers to the UCC25640x for High Gate Driver Current Capability?
    3. 1.3  When Powering on the PFC-LLC AC-DC Converter, What Sequence is Recommended?
    4. 1.4  How to Eliminate the Nuisance ZCS Detection During the Light Load?
    5. 1.5  What is the Purpose of Maintaining the FB Pin Voltage of the UCC25640x Controllers at a Constant Level?
    6. 1.6  How to Improve the Slew Rate Detection at HS Pin of the UCC25640x Controller?
    7. 1.7  How to Operate the UCC25640x Controller in the Open Loop?
    8. 1.8  What Happens if the VCR Pin Peak to Peak Voltage of the Controller Exceeds 6 V?
    9. 1.9  What UCC25640x settings effect the startup duration of the LLC?
    10. 1.10 What is Causing the Current Imbalance in the LLC's Secondary Side Windings?
    11. 1.11 How to Design TL431 Compensator for LLC With UCC25640x Controller
      1. 1.11.1 LLC Plant Transfer Function Under HHC Control
      2. 1.11.2 Type 2 and Type 3 Compensator with TL431 [20]
        1. 1.11.2.1 Type 2 Compensator
        2. 1.11.2.2 Type 2 Compensator Without Fast Lane
        3. 1.11.2.3 Type 3 Compensator with Fast Lane
        4. 1.11.2.4 Type 3 Compensator Without Fast Lane
      3. 1.11.3 Type 3 Compensator Design Example
    12. 1.12 How to Design LLC for Battery Charging and LED Driver Applications?
      1. 1.12.1 LED Driver Design Example
      2. 1.12.2 Battery Charger Design Example
    13. 1.13 How to Implement CC-CV Feedback Control?
      1. 1.13.1 Voltage Feedback Loop (Type 2) Transfer Function
      2. 1.13.2 Current Feedback Loop (Type 2) Transfer Function
    14. 1.14 What is the Simplest Approach to Configure the Burst Mode Thresholds for UCC25640x Based on the Load Power?
    15. 1.15 How to Avoid the UCC25640x Controller to Enter into Burst Mode?
    16. 1.16 What are the Methods for Preventing VCC From Decreasing Below the VCC Restart Threshold During Burst Mode?
    17. 1.17 How Does BMTL Threshold Value Impacts the Output Voltage Ripple and the VCC Pin Voltage and Magnetizing Current?
    18. 1.18 How to Design Magnetics for LLC?
      1. 1.18.1 LLC Resonant Inductor Design
      2. 1.18.2 LLC Transformer Design
    19. 1.19 How is the Dead Time in UCC25640x Determined During ZCS Detection and in the Absence of Valid Slew Rate Detection?
  5. 2References

LLC Design Using T Type Transformer Model

The reference [19] shows the LLC design using APR model whereas the reference [1] shows the LLC design using T-type transformer model. Here, for this design example, UCC25640xEVM specifications[3] with T-type transformer model is considered.

Table 1-1 UCC25640EVM-020 Specifications
PARAMETER TEST CONDITIONS MIN TYP MAX UNITS
INPUT CHARACTERISTICS
DC voltage range 365 390 410 VDC
AC voltage range 85 265 VAC
AC voltage frequency 47 63 Hz
Input DC UVLO On 365 VDC
Input DC UVLO Off 330 VDC
OUTPUT CHARACTERISTICS
VOUT Output voltage - Normal mode Burst mode threshold to full load = 15 A 12 VDC
IOUT Output load current 365 to 410 VDC 15 A
Output voltage ripple 390 VDC and full load = 15 A 120 mVpp
SYSTEM CHARACTERISTICS
Resonant frequency 100 kHz
Peak efficiency 390 VDC, load = 8 A 93%
Operating temperature Natural convection 25 °C

LLC Voltage Gain with T-type Transformer Model

Equation 7 gives voltage gain expression for T-type transformer model shown in Figure 1-5.

Equation 7. Voltage Gain: M ( k , f r , Q ) = 1 1 k 1 1 k 2 f r 2 2 2 + 1 k Q f r 1 f r 2

where

Normalized frequency: f r = ω ω 0

Angular resonant frequency between leakge inductance (primary-side inductance  when the secondary side is completely short-circuited) and Cr: ω 0 = 1 L l k C r

Angular resonant frequency between primary inductance (self-inductance of  the primary winding) and Cr: ω s = 1 L p C r

Characteristic impedance: Z 0 = L l k C r

Q = R a c Z 0 = 8 n 2 π 2 R L Z 0

n  : primary to secondary turns ratio

k  : Coupling coefficient between primary and secondary winding of the transformer

Design Example

Equation 8. Nominal Input Voltage:  V i n _ N o m = 390 V
Equation 9. Output Voltage:  V o u t = 12 V
Equation 10. Nominal Output Power:  P o u t = 180 W
Equation 11. Output Voltage ripple:  120 m V p p
Equation 12. Voltage drop due to power losses:  V l o s s = 180 W 93 % 7 % 15 A = 0.9 V
Equation 13. Coupling coefficient considered for this design:  k = 0.92
Equation 14. Gain at the resonant frequency:  M f o = 1 k = 1.087
Equation 15. Primary to Secondary turns ratio:  n = M f o V i n _ N o m 2 ( V o u t + V l o s s ) 16.5
Equation 16. Equivalent Output Load Resistance:  R L = 12 V 2 180 W = 0.8 Ω
Equation 17. Equivalent AC Load Resistance:  R a c = 8 n 2 π 2 R L = 176.542
Equation 18. Minimum DC  Input Voltage:  V i n _ min = 365 V
Equation 19. Maximum DC  Input Voltage:  V i n _ min = 410 V
Equation 20. Maximum gain requirement:  M max = 2 n ( V o u t _ max + V l o s s ) V i n _ min = 2 16.5 ( 12 + 0.06 + 0.9 ) 365 = 1.172
Equation 21. Minimum gain requirement:  M min = 2 n ( V o u t _ min + V l o s s ) V i n _ max = 2 16.5 ( 12 0.06 + 0.9 ) 410 = 1.033
Equation 22. Q of 3 .5 is considered for this design
GUID-20220708-SS0I-DXT7-P8WM-PTQ56L48FHDV-low.png Figure 1-8 Gain Frequency Plot for k=0.92 and Q=3.5
Equation 23. Characteristic Impedance: Z 0 = R a c Q = 176.542 3.5 = 51.5
Equation 24. Resonant Frequency:  f o = 100 k H z
Equation 25. Resonant Capacitor Value: C r = 1 2 π Z 0 f o = 31.5 n F
Equation 26. Primary Leakage Inductance when the secondaries are short circuited:  L l k = Z 0 2 π f o = 80 μ H
Equation 27. Primary Inductance when the secondaries are open circuited:  L p = L l k 1 k 2 = 522 μ H
Equation 28. Final value of resonant capacitor value selected: C r = 30 n F
Equation 29. Leakage Inductance, primary Inductance, turns ratio values given in the transformer data sheet:  L l k = 82 μ H , L p = 510 μ H , n = 16.5
Equation 30. The final resonant frequency:  f 0 = 1 2 π L l k C r = 101.5 k H z