SLUUCW4 November   2023 BQ27Z558

 

  1.   1
  2.   Description
  3.   Features
  4.   Applications
  5.   5
  6. 1Evaluation Module Overview
    1. 1.1 Introduction
    2. 1.2 Kit Contents
    3. 1.3 Specification
    4. 1.4 Device Information
  7. 2Hardware
    1. 2.1 Hardware Setup
      1. 2.1.1 Hardware Requirements
      2. 2.1.2 Connecting the BQ27Z558 Circuit Module to a Battery Pack
      3. 2.1.3 EVM Jumpers Description
    2. 2.2 Chemical ID
      1. 2.2.1 Chemical ID Selection Process Description
      2. 2.2.2 Hardware Requirements and Setup
      3. 2.2.3 Logging Data in bqStudio
      4. 2.2.4 GPCChem Tool
      5. 2.2.5 Programming a Chemical ID
      6. 2.2.6 Further Resources for Chemical ID Process
    3. 2.3 Calibrating Gauge Measurements
      1. 2.3.1 Voltage Calibration
      2. 2.3.2 Current Calibration
    4. 2.4 Learning Cycle and Golden Image
      1. 2.4.1 Learning Cycle Process Description
      2. 2.4.2 Data Memory Configuration
      3. 2.4.3 Learning Cycle Steps
      4. 2.4.4 Low Temperature Optimization
      5. 2.4.5 Creating the Golden Image File
      6. 2.4.6 Programming the Golden Image File
    5. 2.5 BQ27Z558-Based Circuit Module
      1. 2.5.1 Circuit Module Connections
      2. 2.5.2 Pin Description
  8. 3Software
    1. 3.1 Software Setup
      1. 3.1.1 System Requirements
      2. 3.1.2 Software Installation
    2. 3.2 Troubleshooting Unexpected Dialog Boxes
    3. 3.3 Using bqStudio
      1. 3.3.1 Starting the Program
      2. 3.3.2 Setting Programmable BQ27Z558 Options
    4. 3.4 Gauge Communication
      1. 3.4.1 Advanced Communication in bqStudio
      2. 3.4.2 Standard Data Commands
      3. 3.4.3 Manufacturer Access Commands
      4. 3.4.4 Further Resources on Gauge Communication
  9. 4Hardware Design Files
    1. 4.1 Schematic
    2. 4.2 PCB Layout
    3. 4.3 Bill of Material
  10. 5Additional Information
    1.     Trademarks

Chemical ID

This section describes the process of finding the chemistry identifier, sometimes referred to as Chemical ID or ChemID, of a battery that is used. The ChemID is a necessary element of the Impedance Track™ algorithm that needs to be identified before performing a learning cycle. For the Golden File creation process, using the exact same type of battery that is used in production is necessary. Use this battery for the proceeding sections, as well.

Texas Instruments has a database of thousands of battery profiles, and the ChemID selection process identifies either the exact battery profile or the most similar. This ChemID is then programmed into the gauge, updating dataflash with the battery profile. This profile is used in the Impedance Track™ algorithm for capacity and resistance learning as well as for capacity prediction and other features.

The Chemical ID selection process consists of recording the current, voltage, and temperature (IVT) of a battery during a charge and discharge. This data is then submitted to the online Gauging Parameter Calculator (GPC) Tool, which then gives the customer a report with a best-fit Chemistry ID to program into their gauge. The process performed with this hardware is a charge-relaxation-discharge-relaxation test. A programmable power supply is recommended for this process.