SNLA417 January   2023 DP83TC812R-Q1 , DP83TC812S-Q1

 

  1.   Abstract
  2. 1Introduction
    1. 1.1 Acronyms
  3. 2TC10 Test Setup
    1. 2.1 Overview
    2. 2.2 Wakeup to Linking Sequence
  4. 3Measurement Summary
    1. 3.1 Complete Timing Diagram
    2. 3.2 Measurement Summary
    3. 3.3 LP1 Wake to Linking Time
  5. 4Timing Measurements
    1. 4.1 LP1 WAKE to INH (T1)
    2. 4.2 LP1 INH to WUP (T2)
    3. 4.3 WUP to PHY INH (T3)
    4. 4.4 PHY INH/Buck EN to Buck nRESET (T4)
    5. 4.5 Buck nRESET/PMIC Enable to MCU nReset (T5)
    6. 4.6 MCU nReset to MDIO Communication (T6 and T7)
    7. 4.7 MDIO Master Configuration + Linking (T8 and T9)
  6. 5Measurement Evaluation
    1. 5.1 Recommendations for Optimizing Variable TC10 Times
      1. 5.1.1 Improving MCU Boot-up Time (T6)
      2. 5.1.2 Improving MDIO State Machine (T7)
      3. 5.1.3 Optimizing MDIO Timeline (T8)
        1. 5.1.3.1 Optimizing Master Configuration by Removing Polling
        2. 5.1.3.2 Optimizing Master Configuration by Improving MDC
      4. 5.1.4 PHY Configuration During Sleep
      5. 5.1.5 Other Configurable Values
    2. 5.2 Alternative TC10 Test
  7. 6Conclusion
  8. 7References

LP1 WAKE to INH (T1)

Figure 4-1 illustrates that when the WAKE pulse of the LP1 PHY goes HIGH, the INH pin is driven HIGH in 20.60μs.

GUID-20221129-SS0I-CNSW-ZJJV-XS3SHQQFPHQH-low.pngFigure 4-1 LP1 WAKE to INH

The DP83TC812EVM-MC was modified by removing the INH pin connection to the MCU GPIO pin. This removal prevents a slower INH rise time by removing the additional leakage path of the undefined MCU GPIO pin. Alternatively, a resistor can be added between the INH and MCU GPIO pin to limit the leakage current.