SPRAD86A March   2023  – May 2024 AM62A3 , AM62A3-Q1 , AM62A7 , AM62A7-Q1 , AM68A , AM69A

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. Introduction
  5. Tuning Overview
  6. Hardware Requirement
  7. Software Requirement
    1. 4.1 Processor SDK Linux
    2. 4.2 TI's Reference Imaging Software
    3. 4.3 ISP Tuning Tool
  8. Sensor Software Integration
    1. 5.1 Overview of Image Pipeline Software Architecture
    2. 5.2 Adding Sensor Driver to SDK
    3. 5.3 Updating TIOVX Modules
      1. 5.3.1 Source Code Change
      2. 5.3.2 Rebuild Modules
    4. 5.4 Update GStreamer Plug-in for VISS
      1. 5.4.1 Update VISS Plug-in Property
      2. 5.4.2 Add Exposure Setting for 2A Algorithm
        1. 5.4.2.1 Gain
        2. 5.4.2.2 Exposure Time
        3. 5.4.2.3 Other Parameters
      3. 5.4.3 Rebuild Plug-ins
      4. 5.4.4 Verify New Sensor in GStreamer Plug-in
  9. Tuning Procedure
    1. 6.1 Verify Functional Operation of Camera Capturing
    2. 6.2 Enable Camera Streaming With Initial VPAC Configuration
      1. 6.2.1 Generate Configuration Files
      2. 6.2.2 Generate DCC Binary Files
      3. 6.2.3 Stream Video With the Initial Configuration
    3. 6.3 Adjust Camera Mounting
  10. Perform Basic Tuning
    1. 7.1 Launch the Tuning Tool and Create a Project
    2. 7.2 Tuning Order
    3. 7.3 Black Level Subtraction
    4. 7.4 Hardware 3A (H3A)
    5. 7.5 PCID
    6. 7.6 Auto White Balance (AWB)
      1. 7.6.1 Capture Raw Images for Different Lighting Conditions
      2. 7.6.2 Tuning AWB
    7. 7.7 Color Correction
  11. Perform Fine Tuning
    1. 8.1 Edge Enhancement (EE)
    2. 8.2 Noise Filter 4 (NSF4)
  12. Live Tuning
    1. 9.1 Requirements
    2. 9.2 Supported Features
      1. 9.2.1 RAW Capture
      2. 9.2.2 YUV Capture
      3. 9.2.3 Live DCC Update
      4. 9.2.4 Exposure Control
      5. 9.2.5 White Balance Control
      6. 9.2.6 Sensor Register Read/Write
  13. 10Summary
  14. 11Revision History

Introduction

The AM6xA vision processors have a hardware accelerated Image Signal Processor (ISP) which is also referred as the Vision Pre-processing Accelerator (VPAC). With configurable image processing parameters, VPAC is designed to support a wide variety of raw camera modules (a typical raw camera module includes a lens, a filter, a raw image sensor, and sometimes a serializer). To obtain the best image quality for a specific raw camera module at run-time, the parameters of VPAC needs to be computed and then applied to process the raw sensor images frame by frame. To achieve that, the best VPAC parameters are typically prepared by engineers in an imaging lab under various controlled lighting conditions. Then at run-time, the prepared parameters are referenced and interpolated to fit the run-time lighting environment with the help of software imaging algorithms of Auto Exposure (AE), Auto White Balance (AWB), and dynamic ISP parameter control. The procedure of preparing the best VPAC parameters in an imaging lab is referred as ISP tuning in this application report.

The ISP tuning procedure described in this report applies to all SoCs in the AM6xA vision processor family, including AM62A, AM68A, and AM69A. Examples using the AM62A Starter Kit EVM are provided in the report.

For technical details of the ISP (VPAC) on a specific system-on-chip (SoC), see the Technical Reference Manual (TRM) of that SoC.