SLUUCY8 December   2023 BQ77307

 

  1.   1
  2.   Read This First
    1.     About This Manual
    2.     Battery Notational Conventions
    3.     Trademarks
    4.     Glossary
  3. Introduction
  4. Device Description
    1. 2.1 Overview
    2. 2.2 Functional Block Diagram
  5. Device Configuration
    1. 3.1 Direct Commands and Subcommands
    2. 3.2 Configuration Using OTP or Registers
    3. 3.3 Data Formats
      1. 3.3.1 Unsigned Integer
      2. 3.3.2 Integer
      3. 3.3.3 Hex
  6. Device Security
  7. Protection Subsystem
    1. 5.1  Protections Overview
    2. 5.2  Protection Evaluation and Detection
    3. 5.3  Protection FET Drivers
    4. 5.4  Cell Overvoltage Protection
    5. 5.5  Cell Undervoltage Protection
    6. 5.6  Short Circuit in Discharge Protection
    7. 5.7  Overcurrent in Charge Protection
    8. 5.8  Overcurrent in Discharge 1 and 2 Protections
    9. 5.9  Current Protection Latch
    10. 5.10 CHG Detector
    11. 5.11 Overtemperature in Charge Protection
    12. 5.12 Overtemperature in Discharge Protection
    13. 5.13 Internal Overtemperature Protection
    14. 5.14 Undertemperature in Charge Protection
    15. 5.15 Undertemperature in Discharge Protection
    16. 5.16 Cell Open Wire Detection
    17. 5.17 Voltage Reference Diagnostic Protection
    18. 5.18 VSS Diagnostic Protection
    19. 5.19 REGOUT Diagnostic Protection
    20. 5.20 LFO Oscillator Integrity Diagnostic Protection
    21. 5.21 Internal Factory Trim Diagnostic Protection
  8. Device Status and Controls
    1. 6.1 0x00 Control Status() and 0x12 Battery Status() Commands
    2. 6.2 Unused VC Cell Input Pins
    3. 6.3 LDOs
    4. 6.4 ALERT Pin Operation
    5. 6.5 TS Pin Operation
    6. 6.6 Device Event Timing
  9. Operational Modes
    1. 7.1 Overview of Operational Modes
    2. 7.2 NORMAL Mode
    3. 7.3 SHUTDOWN Mode
    4. 7.4 CONFIG_UPDATE Mode
  10. I2C Serial Communications
    1. 8.1 I2C Serial Communications Interface
  11. Commands and Subcommands
    1. 9.1 Direct Commands
    2. 9.2 Bit Field Definitions for Direct Commands
      1. 9.2.1  Safety Alert A Register
      2. 9.2.2  Safety Status A Register
      3. 9.2.3  Safety Alert B Register
      4. 9.2.4  Safety Status B Register
      5. 9.2.5  Battery Status Register
      6. 9.2.6  Alarm Status Register
      7. 9.2.7  Alarm Raw Status Register
      8. 9.2.8  Alarm Enable Register
      9. 9.2.9  FET CONTROL Register
      10. 9.2.10 REGOUT CONTROL Register
    3. 9.3 Command-only Subcommands
    4. 9.4 Subcommands with Data
    5. 9.5 Bitfield Definitions for Subcommands
      1. 9.5.1 DEVICE NUMBER Register
      2. 9.5.2 FW VERSION Register
      3. 9.5.3 HW VERSION Register
      4. 9.5.4 SECURITY KEYS Register
      5. 9.5.5 PROT RECOVERY Register
  12. 10Data Memory
    1. 10.1 Settings
      1. 10.1.1 Settings:Configuration
        1. 10.1.1.1  Settings:Configuration:Reserved
        2. 10.1.1.2  Settings:Configuration:Power Config
        3. 10.1.1.3  Settings:Configuration:REGOUT Config
        4. 10.1.1.4  Settings:Configuration:I2C Address
        5. 10.1.1.5  Settings:Configuration:I2C Config
        6. 10.1.1.6  Settings:Configuration:TS Mode
        7. 10.1.1.7  Settings:Configuration:Vcell Mode
        8. 10.1.1.8  Settings:Configuration:Default Alarm Mask
        9. 10.1.1.9  Settings:Configuration:FET Options
        10. 10.1.1.10 Settings:Configuration:Charge Detector Time
      2. 10.1.2 Settings:Protection
        1. 10.1.2.1 Settings:Protection:Enabled Protections A
        2. 10.1.2.2 Settings:Protection:Enabled Protections B
        3. 10.1.2.3 Settings:Protection:DSG FET Protections A
        4. 10.1.2.4 Settings:Protection:CHG FET Protections A
        5. 10.1.2.5 Settings:Protection:Both FET Protections B
        6. 10.1.2.6 Settings:Protection:Cell Open Wire Check Time
    2. 10.2 Protections
      1. 10.2.1 Protections:Cell Voltage
        1. 10.2.1.1 Protections:Cell Voltage:Cell Undervoltage Protection Threshold
        2. 10.2.1.2 Protections:Cell Voltage:Cell Undervoltage Protection Delay
        3. 10.2.1.3 Protections:Cell Voltage:Cell Undervoltage Protection Recovery Hysteresis
        4. 10.2.1.4 Protections:Cell Voltage:Cell Overvoltage Protection Threshold
        5. 10.2.1.5 Protections:Cell Voltage:Cell Overvoltage Protection Delay
        6. 10.2.1.6 Protections:Cell Voltage:Cell Overvoltage Protection Recovery Hysteresis
      2. 10.2.2 Protections:Current
        1. 10.2.2.1  Protections:Current:Overcurrent in Charge Protection Threshold
        2. 10.2.2.2  Protections:Current:Overcurrent in Charge Protection Delay
        3. 10.2.2.3  Protections:Current:Overcurrent in Discharge 1 Protection Threshold
        4. 10.2.2.4  Protections:Current:Overcurrent in Discharge 1 Protection Delay
        5. 10.2.2.5  Protections:Current:Overcurrent in Discharge 2 Protection Threshold
        6. 10.2.2.6  Protections:Current:Overcurrent in Discharge 2 Protection Delay
        7. 10.2.2.7  Protections:Current:Short Circuit in Discharge Protection Threshold
        8. 10.2.2.8  Protections:Current:Short Circuit in Discharge Protection Delay
        9. 10.2.2.9  Protections:Current:Latch Limit
        10. 10.2.2.10 Protections:Current:Recovery Time
      3. 10.2.3 Protections:Temperature
        1. 10.2.3.1  Protections:Temperature:Overtemperature in Charge Protection Threshold
        2. 10.2.3.2  Protections:Temperature:Overtemperature in Charge Protection Delay
        3. 10.2.3.3  Protections:Temperature:Overtemperature in Charge Protection Recovery
        4. 10.2.3.4  Protections:Temperature:Undertemperature in Charge Protection Threshold
        5. 10.2.3.5  Protections:Temperature:Undertemperature in Charge Protection Delay
        6. 10.2.3.6  Protections:Temperature:Undertemperature in Charge Protection Recovery
        7. 10.2.3.7  Protections:Temperature:Overtemperature in Discharge Protection Threshold
        8. 10.2.3.8  Protections:Temperature:Overtemperature in Discharge Protection Delay
        9. 10.2.3.9  Protections:Temperature:Overtemperature in Discharge Protection Recovery
        10. 10.2.3.10 Protections:Temperature:Undertemperature in Discharge Protection Threshold
        11. 10.2.3.11 Protections:Temperature:Undertemperature in Discharge Protection Delay
        12. 10.2.3.12 Protections:Temperature:Undertemperature in Discharge Protection Recovery
        13. 10.2.3.13 Protections:Temperature:Internal Overtemperature Protection Threshold
        14. 10.2.3.14 Protections:Temperature:Internal Overtemperature Protection Delay
        15. 10.2.3.15 Protections:Temperature:Internal Overtemperature Protection Recovery
    3. 10.3 Power
      1. 10.3.1 Power:Configuration
        1. 10.3.1.1 Power:Configuration:Voltage CHECK Time
        2. 10.3.1.2 Power:Configuration:Body Diode Threshold
      2. 10.3.2 Power:Shutdown
        1. 10.3.2.1 Power:Shutdown:Shutdown Cell Voltage
        2. 10.3.2.2 Power:Shutdown:Shutdown Stack Voltage
        3. 10.3.2.3 Power:Shutdown:Shutdown Temperature
    4. 10.4 Security
      1. 10.4.1 Security:Settings
        1. 10.4.1.1 Security:Settings:Security Settings
        2. 10.4.1.2 Security:Settings:Full Access Key Step 1
        3. 10.4.1.3 Security:Settings:Full Access Key Step 2
      2. 10.4.2 Data Memory Summary
  13. 11Revision History

Configuration Using OTP or Registers

The BQ77307 device includes Data Memory registers with values stored in digital logic, as well as one-time programmable (OTP) memory, which holds device trim information and default settings for registers. At initial power-up or after a reset, the device loads the OTP settings into registers, which are used by the device logic during operation. If the device is unsealed, it can also perform a reset on demand if the 0x0012 RESET() subcommand is sent. Register values are preserved while the device is in NORMAL mode. If the device enters SHUTDOWN mode or a reset occurs, all register memory is cleared, and the device returns to the programmed OTP parameters when powered again.

The OTP memory is written by TI during device manufacturing and cannot be modified by the customer. A customized OTP configuration can be developed and programmed into a custom device by TI, depending on business terms.

The device supports several different potential use cases:

  • Standalone operation - a customized OTP configuration is programmed into a custom device by TI. At each powerup of the device, it loads settings from OTP and operate autonomously without needing any host processor interaction. The I2C bus on the device is not connected. If interested in this option, please contact TI for further discussion.
  • Autonomous operation with status information - as above, the device is configured using a customized OTP programmed by TI. While the device does not require host interaction, a host processor can receive an interrupt whenever a protection alert or fault occurs and can query the device over I2C to determine what event initiated the interrupt. In this case, the host processor is not involved in configuring protection settings, so is not necessarily involved in safety critical functionality. The OTP configuration can optionally allow the host processor to control the FET drivers over I2C, or they can be set for only autonomous operation by the device itself.
  • Autonomous operation with configuration/status access - as in Autonomous operation with status information, the device OTP is programmed by TI into a custom device, and the host processor can receive interrupts and check status information over I2C. In addition, the host can use a security key to unseal the device and modify settings in registers from their preprogrammed values loaded from OTP.
  • Programmable operation with configuration/status access - if a custom device from TI with OTP preprogrammed with settings is not desired or practical, then the device can be configured by a host processor over I2C, either in the field or on the customer production line. In the field, any time the device is powered from SHUTDOWN mode, the host can configure the desired settings before the FETs are enabled. If a host processor is not included in the pack, then the customer can program the device on the production line, then leave it powered continuously thereafter in field operation. Status information is also available over I2C during operation, even if the settings have been locked with the security key.

The OTP memory also includes a digital signature, which is stored in OTP. When the device is first powered or after a reset, it reads the OTP settings and check that the signature matches that stored, to provide robustness against bit errors in reading or corruption of the memory. If a signature error is detected, the device enters SHUTDOWN mode.