SNOAAA5 April   2024 DRV8220 , FDC1004-Q1 , LDC3114-Q1 , TMAG5131-Q1 , TMAG5173-Q1 , TMAG6180-Q1

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Introduction
  5. 2Automotive Door Handle Architectures
  6. 3Functional Demo Design
  7. 4Detailed Design Flow for Door Handle Functions
    1. 4.1 Door Open or Closed Detection With Magnetic Sensing
      1. 4.1.1 Demo Implementation of Open Close Detection Using TMAG5131-Q1
    2. 4.2 Deployable Door Handle Position Detection With Magnetic Sensing
      1. 4.2.1 Demo Implementation of Deployable Door Handle Position Sensing Using TMAG6180-Q1
    3. 4.3 Hand Proximity Detection With Capacitive Sensing
      1. 4.3.1 Overview of Capacitive Sensing Applications
      2. 4.3.2 Examples of Soft-Touch Detection Based on Capacitive Sensing in a Door Handle Demo
        1. 4.3.2.1 Touch Button
        2. 4.3.2.2 Door Handle
    4. 4.4 Push Button With Inductive Sensing
      1. 4.4.1 Inductive Push Buttons
      2. 4.4.2 Inductive Push Button Sensitivity
      3. 4.4.3 Target Material
      4. 4.4.4 Target Distance and Sensor Size
      5. 4.4.5 Design Example
  8. 5Summary
  9. 6References

Summary

Position sensors can be used to reliably implement various functions in automotive door handle designs. An AMR angle sensor or 3D Hall-effect sensor can enable door handle position detection for deployable door handles by measuring the angle of a rotating magnet. A Hall-effect switch can provide door open or closed detection by sensing the presence or absence of a magnet. Capacitive sensing can enable hand proximity detection and/or soft touch detection. Finally, soft touch and or push button detection can be implemented using inductive sensors. Design examples presented are based on a demo which is also featured in the demo video Designing With Position Sensors: Automotive Door Handles and the Position Sensing in Automotive Door Handle Systems application brief.