SPRACN0F October   2021  – March 2023 TMS320F280021 , TMS320F280021-Q1 , TMS320F280023 , TMS320F280023-Q1 , TMS320F280023C , TMS320F280025 , TMS320F280025-Q1 , TMS320F280025C , TMS320F280025C-Q1 , TMS320F280033 , TMS320F280034 , TMS320F280034-Q1 , TMS320F280036-Q1 , TMS320F280036C-Q1 , TMS320F280037 , TMS320F280037-Q1 , TMS320F280037C , TMS320F280037C-Q1 , TMS320F280038-Q1 , TMS320F280038C-Q1 , TMS320F280039 , TMS320F280039-Q1 , TMS320F280039C , TMS320F280039C-Q1 , TMS320F280040-Q1 , TMS320F280040C-Q1 , TMS320F280041 , TMS320F280041-Q1 , TMS320F280041C , TMS320F280041C-Q1 , TMS320F280045 , TMS320F280048-Q1 , TMS320F280048C-Q1 , TMS320F280049 , TMS320F280049-Q1 , TMS320F280049C , TMS320F280049C-Q1 , TMS320F28374D , TMS320F28374S , TMS320F28375D , TMS320F28375S , TMS320F28375S-Q1 , TMS320F28376D , TMS320F28376S , TMS320F28377S , TMS320F28377S-Q1 , TMS320F28378D , TMS320F28378S , TMS320F28379D , TMS320F28379D-Q1 , TMS320F28379S , TMS320F28384D , TMS320F28384S , TMS320F28386D , TMS320F28386S , TMS320F28388D , TMS320F28388S , TMS320F28P650DH , TMS320F28P650DK , TMS320F28P650SH , TMS320F28P650SK , TMS320F28P659DH-Q1 , TMS320F28P659DK-Q1 , TMS320F28P659SH-Q1

 

  1.    The Essential Guide for Developing With C2000™ Real-Time Microcontrollers
  2.   Trademarks
  3. 1C2000 and Real-Time Control
    1. 1.1 Getting Started Resources
    2. 1.2 Processing
    3. 1.3 Control
    4. 1.4 Sensing
    5. 1.5 Interface
    6. 1.6 Functional Safety
  4. 2Sensing Key Technologies
    1. 2.1 Accurate Digital Domain Representation of Analog Signals
      1. 2.1.1 Value Proposition
      2. 2.1.2 In Depth
      3. 2.1.3 Device List
      4. 2.1.4 Hardware Platforms and Software Examples
      5. 2.1.5 Documentation
    2. 2.2 Optimizing Acquisition Time vs Circuit Complexity for Analog Inputs
      1. 2.2.1 Value Proposition
      2. 2.2.2 In Depth
      3. 2.2.3 Device List
      4. 2.2.4 Hardware Platforms and Software Examples
      5. 2.2.5 Documentation
    3. 2.3 Hardware Based Monitoring of Dual-Thresholds Using a Single Pin Reference
      1. 2.3.1 Value Proposition
      2. 2.3.2 In Depth
      3. 2.3.3 Device List
      4. 2.3.4 Hardware Platforms and Software Examples
      5. 2.3.5 Documentation
    4. 2.4 Resolving Tolerance and Aging Effects During ADC Sampling
      1. 2.4.1 Value Proposition
      2. 2.4.2 In Depth
      3. 2.4.3 Device List
      4. 2.4.4 Hardware Platforms and Software Examples
      5. 2.4.5 Documentation
    5. 2.5 Realizing Rotary Sensing Solutions Using C2000 Configurable Logic Block
      1. 2.5.1 Value Proposition
      2. 2.5.2 In Depth
      3. 2.5.3 Device List
      4. 2.5.4 Hardware Platforms and Software Examples
      5. 2.5.5 Documentation
    6. 2.6 Smart Sensing Across An Isolation Boundary
      1. 2.6.1 Value Proposition
      2. 2.6.2 In Depth
      3. 2.6.3 Device List
      4. 2.6.4 Hardware Platforms and Software Examples
      5. 2.6.5 Documentation
    7. 2.7 Enabling Intra-Period Updates in High Bandwidth Control Topologies
      1. 2.7.1 Value Proposition
      2. 2.7.2 In Depth
      3. 2.7.3 Device List
      4. 2.7.4 Hardware Platforms and Software Examples
      5. 2.7.5 Documentation
    8. 2.8 Accurate Monitoring of Real-Time Control System Events Without the Need for Signal Conditioning
      1. 2.8.1 Value Proposition
      2. 2.8.2 In Depth
      3. 2.8.3 Device List
      4. 2.8.4 Hardware Platforms and Software Examples
      5. 2.8.5 Documentation
  5. 3Processing Key Technologies
    1. 3.1 Accelerated Trigonometric Math Functions
      1. 3.1.1 Value Proposition
      2. 3.1.2 In Depth
      3. 3.1.3 Device List
      4. 3.1.4 Hardware Platforms and Software Examples
      5. 3.1.5 Documentation
    2. 3.2 Fast Onboard Integer Division
      1. 3.2.1 Value Proposition
      2. 3.2.2 In Depth
      3. 3.2.3 Device List
      4. 3.2.4 Hardware Platforms and Software Platforms
      5. 3.2.5 Documentation
    3. 3.3 Hardware Support for Double-Precision Floating-Point Operations
      1. 3.3.1 Value Proposition
      2. 3.3.2 In Depth
      3. 3.3.3 Device List
      4. 3.3.4 Hardware Platforms and Software Examples
      5. 3.3.5 Documentation
    4. 3.4 Increasing Control Loop Bandwidth With An Independent Processing Unit
      1. 3.4.1 Value Proposition
      2. 3.4.2 In Depth
      3. 3.4.3 Device List
      4. 3.4.4 Hardware Platforms and Software Examples
      5. 3.4.5 Documentation
    5. 3.5 Flexible System Interconnect: C2000 X-Bar
      1. 3.5.1 Value Proposition
      2. 3.5.2 In Depth
      3. 3.5.3 Device List
      4. 3.5.4 Hardware Platforms and Software Examples
      5. 3.5.5 Documentation
    6. 3.6 Improving Control Performance With Nonlinear PID Control
      1. 3.6.1 Value Proposition
      2. 3.6.2 In Depth
      3. 3.6.3 Device List
      4. 3.6.4 Hardware Platforms and Software Examples
      5. 3.6.5 Documentation
    7. 3.7 Understanding Flash Memory Performance In Real-Time Control Applications
      1. 3.7.1 Value Proposition
      2. 3.7.2 In Depth
      3. 3.7.3 Device List
      4. 3.7.4 Hardware Platforms and Software Examples
      5. 3.7.5 Documentation
    8. 3.8 Deterministic Program Execution With the C28x DSP Core
      1. 3.8.1 Value Proposition
      2. 3.8.2 In Depth
      3. 3.8.3 Device List
      4. 3.8.4 Hardware Platforms and Software Examples
      5. 3.8.5 Documentation
    9. 3.9 Efficient Live Firmware Updates (LFU) and Firmware Over-The-Air (FOTA) updates
      1. 3.9.1 Value Proposition
      2. 3.9.2 In Depth
      3. 3.9.3 Device List
      4. 3.9.4 Hardware Platforms and Software Examples
      5. 3.9.5 Documentation
  6. 4Control Key Technologies
    1. 4.1 Reducing Limit Cycling in Control Systems With C2000 HRPWMs
      1. 4.1.1 Value Proposition
      2. 4.1.2 In Depth
      3. 4.1.3 Device List
      4. 4.1.4 Hardware Platforms and Software Examples
      5. 4.1.5 Documentation
    2. 4.2 Shoot Through Prevention for Current Control Topologies With Configurable Deadband
      1. 4.2.1 Value Proposition
      2. 4.2.2 In Depth
      3. 4.2.3 Device List
      4. 4.2.4 Documentation
    3. 4.3 On-Chip Hardware Customization Using the C2000 Configurable Logic Block
      1. 4.3.1 Value Proposition
      2. 4.3.2 In Depth
      3. 4.3.3 Device List
      4. 4.3.4 Hardware Platforms and Software Examples
      5. 4.3.5 Documentation
    4. 4.4 Fast Detection of Over and Under Currents and Voltages
      1. 4.4.1 Value Proposition
      2. 4.4.2 In Depth
      3. 4.4.3 Device List
      4. 4.4.4 Hardware Platforms and Software Examples
      5. 4.4.5 Documentation
    5. 4.5 Improving System Power Density With High Resolution Phase Control
      1. 4.5.1 Value Proposition
      2. 4.5.2 In Depth
      3. 4.5.3 Device List
      4. 4.5.4 Hardware Platforms and Software Examples
      5. 4.5.5 Documentation
    6. 4.6 Safe and Optimized PWM Updates in High-Frequency, Multi-Phase and Variable Frequency Topologies
      1. 4.6.1 Value Proposition
      2. 4.6.2 In Depth
      3. 4.6.3 Device List
      4. 4.6.4 Hardware Platforms and Software Examples
      5. 4.6.5 Documentation
    7. 4.7 Solving Event Synchronization Across Multiple Controllers in Decentralized Control Systems
      1. 4.7.1 Value Proposition
      2. 4.7.2 In Depth
      3. 4.7.3 Device List
      4. 4.7.4 Hardware Platforms and Software Examples
      5. 4.7.5 Documentation
  7. 5Interface Key Technologies
    1. 5.1 Direct Host Control of C2000 Peripherals
      1. 5.1.1 Value Proposition
      2. 5.1.2 In Depth
        1. 5.1.2.1 HIC Bridge for FSI Applications
        2. 5.1.2.2 HIC Bridge for Position Encoder Applications Using CLB
      3. 5.1.3 Device List
      4. 5.1.4 Hardware Platforms and Software Examples
      5. 5.1.5 Documentation
    2. 5.2 Securing External Communications and Firmware Updates With an AES Engine
      1. 5.2.1 Value Proposition
      2. 5.2.2 In Depth
      3. 5.2.3 Device List
      4. 5.2.4 Hardware Platforms and Software Examples
      5. 5.2.5 Documentation
    3. 5.3 Distributed Real-Time Control Across an Isolation Boundary
      1. 5.3.1 Value Proposition
      2. 5.3.2 In Depth
      3. 5.3.3 Device List
      4. 5.3.4 Hardware Platforms and Software Examples
      5. 5.3.5 Documentation
    4. 5.4 Custom Tests and Data Pattern Generation Using the Embedded Pattern Generator (EPG)
      1. 5.4.1 Value Proposition
      2. 5.4.2 In Depth
      3. 5.4.3 Device List
      4. 5.4.4 Hardware Platforms and Software Examples
      5. 5.4.5 Documentation
  8. 6Safety Key Technologies
    1. 6.1 Non-Intrusive Run Time Monitoring and Diagnostics as Part of the Control Loop
      1. 6.1.1 Value Proposition
      2. 6.1.2 In Depth
      3. 6.1.3 Device List
      4. 6.1.4 Hardware Platforms and Software Examples
      5. 6.1.5 Documentation
    2. 6.2 Hardware Built-In Self-Test of the C28x CPU
      1. 6.2.1 Value Proposition
      2. 6.2.2 In Depth
      3. 6.2.3 Device List
      4. 6.2.4 Hardware Platforms and Software Examples
      5. 6.2.5 Documentation
    3. 6.3 Zero CPU Overhead Cyclic Redundancy Check for Embedded On-Chip Memories
      1. 6.3.1 Value Proposition
      2. 6.3.2 In Depth
      3. 6.3.3 Device List
      4. 6.3.4 Hardware Platforms and Software Examples
      5. 6.3.5 Documentation
    4. 6.4 Boot Code Authentication Prior To Code Execution
      1. 6.4.1 Value Proposition
      2. 6.4.2 In Depth
      3. 6.4.3 Device List
      4. 6.4.4 Hardware Platforms and Software Examples
        1. 6.4.4.1 Documentation
  9. 7References
    1. 7.1 Device List
    2. 7.2 Hardware/Software Resources
    3. 7.3 Documentation
  10. 8Revision History

In Depth

The first step when selecting an MCU for a real-time control system is relatively straightforward process; comparing the components of the MCU to the system needs. There are questions of memory size, CPU speed, communications standards used, analog content, number of I/Os, and so forth. When looking at the fit for an analog module like the ADC, it can appear straightforward to base the decision on sampling rate, number of inputs, and bit level. In practice, however, there is much more to this decision.

Too often ADC selection is based solely on the top level specifications, only to realize during development there are limitations to the system performance due to the ADC itself:

  • Will the system be using the analog inputs for frequency analysis? Then, AC specifications like SNR and THD become important to consider when picking an MCU with an on-chip ADC.
  • Is overall accuracy a key care about? Looking at the DC specifications like INL, Gain, and Offset are key parameters to consider.
    A quick summary of ADC specifications and their relevance to the system:
    • AC Specifications: Parameters related to how accurately the converter can resolve the fundamental frequency tone of a signal from other noise sources. Includes SNR, SINAD, THD, and SFDR all expressed in dB. Also includes ENOB, which is the SINAD translated into number of bits. Typically SINAD and ENOB based on SINAD are considered when choosing an ADC, the importance will vary depending on the end application.
    • DC Specifications: Parameters related to the accuracy of the converter as it applies to representing an analog input in the digital domain. Includes Gain, Offset, DNL, and INL. The weighted summation of the Gain, Offset, and INL are often referred to as "Total Unadjusted Error" (Equation 1). This equation is typically used to determine the real-world impact of these parameters on the accuracy of a conversion.
Equation 1. GUID-403AEDD8-A636-463A-A286-B19EA842BFFD-low.png

where

  • Errgain is the maximum gain error of the ADC in LSBs
  • Erroffset is the maximum offset error ADC in LSBs
  • ErrINL is the maximum INL error of the ADC in LSBs

An example of how the C2000 ADC is specified and the parameters can be seen in #GUID-C3961371-634F-4011-97EE-A61164A2FE54/T5843526-39, a dynamic link to this same table in the data sheet is located here.

One final aspect of all the parameters that C2000 devices list in the data sheet is what is implied by the inclusion of the parameter itself. For parameters that have a MIN/MAX, these are assured specs over the full operational range and lifetime of the device. The typical (TYP) column is also significant for all parameters, as it represents the mean performance of a parameter across its operational range.

Table 2-1 TMS320F28379D 16-Bit ADC Specifications
ParameterTest ConditionsMinTypMaxUnit
ADC conversion cycles29.631ADCCLKs
Power-up time (after setting ADCPWDNZ to first conversion)500µs
Gain error–64±964LSBs
Offset error–16±916LSBs
Channel-to-channel gain error±6LSBs
Channel-to-channel offset error±3LSBs
ADC-to-ADC gain errorIdentical VREFHI and VREFLO for all ADCs±6LSBs
ADC-to-ADC offset errorIdentical VREFHI and VREFLO for all ADCs±3LSBs
DNL> –1±0.51LSBs
INL–3±1.53LSBs
SNRVREFHI = 2.5 V, fin = 10 kHz87.6dB
THDVREFHI = 2.5 V, fin = 10 kHz–93.5dB
SFDRVREFHI = 2.5 V, fin = 10 kHz95.4dB
SINADVREFHI = 2.5 V, fin = 10 kHz86.6dB
ENOBVREFHI = 2.5 V, fin = 10 kHz,
single ADC
14.1bits
VREFHI = 2.5 V, fin = 10 kHz, synchronous ADCs14.1
VREFHI = 2.5 V, fin = 10 kHz, asynchronous ADCsNot supported
PSRRVDDA = 3.3-V DC + 200 mV
DC up to Sine at 1 kHz
77dB
PSRRVDDA = 3.3-V DC + 200 mV
Sine at 800 kHz
74dB
CMRRDC to 1 MHz60dB
VREFHI input current190µA
ADC-to-ADC isolationVREFHI = 2.5 V, synchronous ADCs–22LSBs
VREFHI = 2.5 V, asynchronous ADCsNot supported