TIDUES0E June   2019  – April 2024 TMS320F28P550SJ , TMS320F28P559SJ-Q1

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Key System Specifications
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Highlighted Products
      1. 2.2.1  UCC21710
      2. 2.2.2  UCC14141-Q1
      3. 2.2.3  AMC1311
      4. 2.2.4  AMC1302
      5. 2.2.5  OPA320
      6. 2.2.6  AMC1306M05
      7. 2.2.7  AMC1336
      8. 2.2.8  TMCS1133
      9. 2.2.9  TMS320F280039C
      10. 2.2.10 TLVM13620
      11. 2.2.11 ISOW1044
      12. 2.2.12 TPS2640
    3. 2.3 System Design Theory
      1. 2.3.1 Dual Active Bridge Analogy With Power Systems
      2. 2.3.2 Dual-Active Bridge – Switching Sequence
      3. 2.3.3 Dual-Active Bridge – Zero Voltage Switching (ZVS)
      4. 2.3.4 Dual-Active Bridge - Design Considerations
        1. 2.3.4.1 Leakage Inductor
        2. 2.3.4.2 Soft Switching Range
        3. 2.3.4.3 Effect of Inductance on Current
        4. 2.3.4.4 Phase Shift
        5. 2.3.4.5 Capacitor Selection
          1. 2.3.4.5.1 DC-Blocking Capacitors
        6. 2.3.4.6 Switching Frequency
        7. 2.3.4.7 Transformer Selection
        8. 2.3.4.8 SiC MOSFET Selection
      5. 2.3.5 Loss Analysis
        1. 2.3.5.1 SiC MOSFET and Diode Losses
        2. 2.3.5.2 Transformer Losses
        3. 2.3.5.3 Inductor Losses
        4. 2.3.5.4 Gate Driver Losses
        5. 2.3.5.5 Efficiency
        6. 2.3.5.6 Thermal Considerations
  9. 3Circuit Description
    1. 3.1 Power Stage
    2. 3.2 DC Voltage Sensing
      1. 3.2.1 Primary DC Voltage Sensing
      2. 3.2.2 Secondary DC Voltage Sensing
        1. 3.2.2.1 Secondary Side Battery Voltage Sensing
    3. 3.3 Current Sensing
    4. 3.4 Power Architecture
      1. 3.4.1 Auxiliary Power Supply
      2. 3.4.2 Gate Driver Bias Power Supply
      3. 3.4.3 Isolated Power Supply for Sense Circuits
    5. 3.5 Gate Driver Circuit
    6. 3.6 Additional Circuitry
    7. 3.7 Simulation
      1. 3.7.1 Setup
      2. 3.7.2 Running Simulations
  10. 4Hardware, Software, Testing Requirements, and Test Results
    1. 4.1 Required Hardware and Software
      1. 4.1.1 Hardware
      2. 4.1.2 Software
        1. 4.1.2.1 Getting Started With Software
        2. 4.1.2.2 Pin Configuration
        3. 4.1.2.3 PWM Configuration
        4. 4.1.2.4 High-Resolution Phase Shift Configuration
        5. 4.1.2.5 ADC Configuration
        6. 4.1.2.6 ISR Structure
    2. 4.2 Test Setup
    3. 4.3 PowerSUITE GUI
    4. 4.4 LABs
      1. 4.4.1 Lab 1
      2. 4.4.2 Lab 2
      3. 4.4.3 Lab 3
      4. 4.4.4 Lab 4
      5. 4.4.5 Lab 5
      6. 4.4.6 Lab 6
      7. 4.4.7 Lab 7
    5. 4.5 Test Results
      1. 4.5.1 Closed-Loop Performance
  11. 5Design Files
    1. 5.1 Schematics
    2. 5.2 Bill of Materials
    3. 5.3 Altium Project
    4. 5.4 Gerber Files
    5. 5.5 Assembly Drawings
  12. 6Related Documentation
    1. 6.1 Trademarks
  13. 7Terminology
  14. 8About the Author
  15. 9Revision History

Lab 5

Figure 4-40 shows test setup for lab 5 (Open Loop voltage - Reverse power flow).

In this setup, the DC source is connected to the secondary side and the resistive load is connected to the primary side.


TIDA-010054 Lab 5 Test Setup

Figure 4-40 Lab 5 Test Setup

Compile the project by selecting Lab 5: Open Loop PWM, Sec to Prim Power Flow in the drop-down menu of Project Options from PowerSUITE GUI. Make sure current and voltage limits are set per operating conditions.

#if DAB_LAB == 5
#define DAB_CONTROL_RUNNING_ON C28X_CORE
#define DAB_POWER_FLOW DAB_POWER_FLOW_SEC_PRI
#define DAB_INCR_BUILD DAB_OPEN_LOOP_BUILD
#define DAB_CONTROL_MODE  DAB_VOLTAGE_MODE
#define DAB_TEST_SETUP DAB_TEST_SETUP_RES_LOAD
#define DAB_PROTECTION DAB_PROTECTION_ENABLED
#define DAB_SFRA_TYPE  2
#define DAB_SFRA_AMPLITUDE (float32_t)DAB_SFRA_INJECTION_AMPLITUDE_LEVEL2
#endif
  1. Run the project by clicking the green run button in CCS.
  2. Populate the required variables in the watch window by loading JavaScript setupdebugenv_lab5.js in the scripting console.
    TIDA-010054 Lab 5 - Watch
                            View Figure 4-41 Lab 5 - Watch View
  3. Enable fans and relays by writing "1" into DAB_enableFan and DAB_enableRelay.
  4. Enable PWM by writing “1” to the DAB_clearTrip variable.
  5. Vary phase shift slowly in steps of 0.002 pu by writing to DAB_pwmPhaseShiftPrimSec_pu and observe the change in voltage at the output of converter.
    Note: The negative sign in the phase shift value is required for the reverse power flow.
  6. Before increasing voltages validate primary side overvoltage protection.
  7. Set VPRIM_TRIP to 50 V.
  8. Slowly increase (negative) phase shift and observe trip when voltage hits 50 V.
    TIDA-010054 Lab 5 - Primary Side
                            Overvoltage Protection Figure 4-42 Lab 5 - Primary Side Overvoltage Protection
  9. After verifying that overvoltage protection is working, set VPRIM_TRIP back to 1000 V.
  10. Now voltage on the secondary side can be slowly increased and phase shift can be modified to observe the primary side voltage and current.
    TIDA-010054 Lab 5 Expression
                            Window High Voltage Figure 4-43 Lab 5 Expression Window High Voltage
  • Measure SFRA Plant for Voltage Loop
    1. Follow the same instructions as in Lab 2.
      TIDA-010054 Lab 5 - SFRA
                                    Plant Plot for the Open Voltage Loop Test
      Test Condition: VIN = 350 V, VOUT = 550 V, IOUT = 9 A.
      VIN refers to secondary side voltage, VOUT and IOUT refer to primary side voltage and current in reverse direction (DAB_IprimSensed_Amps = –9 A ).
      Figure 4-44 Lab 5 - SFRA Plant Plot for the Open Voltage Loop Test
  • Measure SFRA Plant for Current Loop
    1. Follow the same steps as in Lab 2.
      TIDA-010054 Lab 5 - SFRA
                                    Plant Plot for the Open Current Loop Test
      Test Condition: VIN = 350 V, VOUT = 550 V, IOUT = 9 A.
      VIN refers to secondary side voltage, VOUT and IOUT refer to primary side voltage and current in reverse direction (DAB_IprimSensed_Amps = –9 A).
      Figure 4-45 Lab 5 - SFRA Plant Plot for the Open Current Loop Test