인터페이스 LVDS, M-LVDS 및 PECL

SN65LVDS33

활성

-4~5V의 일반 모드 범위를 가진 쿼드 LVDS 리시버

제품 상세 정보

Function Receiver Protocols LVDS Number of transmitters 0 Number of receivers 4 Supply voltage (V) 3.3 Signaling rate (MBits) 400 Input signal ECL, LVPECL, PECL Output signal LVTTL Rating Catalog Operating temperature range (°C) -40 to 85
Function Receiver Protocols LVDS Number of transmitters 0 Number of receivers 4 Supply voltage (V) 3.3 Signaling rate (MBits) 400 Input signal ECL, LVPECL, PECL Output signal LVTTL Rating Catalog Operating temperature range (°C) -40 to 85
SOIC (D) 16 59.4 mm² 9.9 x 6 TSSOP (PW) 16 32 mm² 5 x 6.4
  • 400-Mbps Signaling Rate1 and 200-Mxfr/s Data Transfer Rate
  • Operates With a Single 3.3-V Supply
  • –4-V to 5-V Common-Mode Input Voltage Range
  • Differential Input Thresholds <±50 mV With 50 mV of Hysteresis Over Entire Common-Mode Input Voltage Range
  • Integrated 110- Line Termination Resistors On LVDT Products
  • TSSOP Packaging (33 Only)
  • Complies With TIA/EIA-644 (LVDS)
  • Active Failsafe Assures a High-Level Output With No Input
  • Bus-Pin ESD Protection Exceeds 15 kV HBM
  • Input Remains High-Impedance on Power Down
  • TTL Inputs Are 5-V Tolerant
  • Pin-Compatible With the AM26LS32, SN65LVDS32B, µA9637, SN65LVDS9637B

1 The signaling rate of a line, is the number of voltage transitions that are made per second expressed in the units bps (bits per second).

  • 400-Mbps Signaling Rate1 and 200-Mxfr/s Data Transfer Rate
  • Operates With a Single 3.3-V Supply
  • –4-V to 5-V Common-Mode Input Voltage Range
  • Differential Input Thresholds <±50 mV With 50 mV of Hysteresis Over Entire Common-Mode Input Voltage Range
  • Integrated 110- Line Termination Resistors On LVDT Products
  • TSSOP Packaging (33 Only)
  • Complies With TIA/EIA-644 (LVDS)
  • Active Failsafe Assures a High-Level Output With No Input
  • Bus-Pin ESD Protection Exceeds 15 kV HBM
  • Input Remains High-Impedance on Power Down
  • TTL Inputs Are 5-V Tolerant
  • Pin-Compatible With the AM26LS32, SN65LVDS32B, µA9637, SN65LVDS9637B

1 The signaling rate of a line, is the number of voltage transitions that are made per second expressed in the units bps (bits per second).

This family of four LVDS data line receivers offers the widest common-mode input voltage range in the industry. These receivers provide an input voltage range specification compatible with a 5-V PECL signal as well as an overall increased ground-noise tolerance. They are in industry standard footprints with integrated termination as an option.

Precise control of the differential input voltage thresholds allows for inclusion of 50 mV of input voltage hysteresis to improve noise rejection on slowly changing input signals. The input thresholds are still no more than ±50 mV over the full input common-mode voltage range.

The high-speed switching of LVDS signals usually necessitates the use of a line impedance matching resistor at the receiving-end of the cable or transmission media. The SN65LVDT series of receivers eliminates this external resistor by integrating it with the receiver. The nonterminated SN65LVDS series is also available for multidrop or other termination circuits.

The receivers can withstand ±15 kV human-body model (HBM) and ±600 V machine model (MM) electrostatic discharges to the receiver input pins with respect to ground without damage. This provides reliability in cabled and other connections where potentially damaging noise is always a threat.

The receivers also include a (patent pending) failsafe circuit that will provide a high-level output within 600 ns after loss of the input signal. The most common causes of signal loss are disconnected cables, shorted lines, or powered-down transmitters. The failsafe circuit prevents noise from being received as valid data under these fault conditions. This feature may also be used for Wired-Or bus signaling. See The Active Failsafe Feature of the SN65LVDS32B application note.

The intended application and signaling technique of these devices is point-to-point baseband data transmission over controlled impedance media of approximately 100 . The transmission media may be printed-circuit board traces, backplanes, or cables. The ultimate rate and distance of data transfer is dependent upon the attenuation characteristics of the media and the noise coupling to the environment.

The SN65LVDS33, SN65LVDT33, SN65LVDS34 and SN65LVDT34 are characterized for operation from –40°C to 85°C.

This family of four LVDS data line receivers offers the widest common-mode input voltage range in the industry. These receivers provide an input voltage range specification compatible with a 5-V PECL signal as well as an overall increased ground-noise tolerance. They are in industry standard footprints with integrated termination as an option.

Precise control of the differential input voltage thresholds allows for inclusion of 50 mV of input voltage hysteresis to improve noise rejection on slowly changing input signals. The input thresholds are still no more than ±50 mV over the full input common-mode voltage range.

The high-speed switching of LVDS signals usually necessitates the use of a line impedance matching resistor at the receiving-end of the cable or transmission media. The SN65LVDT series of receivers eliminates this external resistor by integrating it with the receiver. The nonterminated SN65LVDS series is also available for multidrop or other termination circuits.

The receivers can withstand ±15 kV human-body model (HBM) and ±600 V machine model (MM) electrostatic discharges to the receiver input pins with respect to ground without damage. This provides reliability in cabled and other connections where potentially damaging noise is always a threat.

The receivers also include a (patent pending) failsafe circuit that will provide a high-level output within 600 ns after loss of the input signal. The most common causes of signal loss are disconnected cables, shorted lines, or powered-down transmitters. The failsafe circuit prevents noise from being received as valid data under these fault conditions. This feature may also be used for Wired-Or bus signaling. See The Active Failsafe Feature of the SN65LVDS32B application note.

The intended application and signaling technique of these devices is point-to-point baseband data transmission over controlled impedance media of approximately 100 . The transmission media may be printed-circuit board traces, backplanes, or cables. The ultimate rate and distance of data transfer is dependent upon the attenuation characteristics of the media and the noise coupling to the environment.

The SN65LVDS33, SN65LVDT33, SN65LVDS34 and SN65LVDT34 are characterized for operation from –40°C to 85°C.

다운로드 스크립트와 함께 비디오 보기 동영상

기술 문서

star =TI에서 선정한 이 제품의 인기 문서
검색된 결과가 없습니다. 검색어를 지우고 다시 시도하십시오.
모두 보기5
유형 직함 날짜
* Data sheet High Speed Differential Receivers datasheet (Rev. B) 2004/11/04
Application brief LVDS to Improve EMC in Motor Drives 2018/09/27
Application brief How Far, How Fast Can You Operate LVDS Drivers and Receivers? 2018/08/03
Application brief How to Terminate LVDS Connections with DC and AC Coupling 2018/05/16
Application note An Overview of LVDS Technology 1998/10/05

설계 및 개발

추가 조건 또는 필수 리소스는 사용 가능한 경우 아래 제목을 클릭하여 세부 정보 페이지를 확인하세요.

평가 보드

SN65LVDS31-33EVM — SN65LVDS31 및 SN65LVDS33용 평가 모듈

TI offers a series of low-voltage differential signaling (LVDS) evaluation modules (EVMs) designed for analysis of the electrical characteristics of LVDS drivers and receivers. Four unique EVMs are available to evaluate the different classes of LVDS devices offered by TI.

As seen in the Combination (...)

사용 설명서: PDF
TI.com에서 구매할 수 없습니다
시뮬레이션 모델

SN65LVDS33 IBIS Model (Rev. A)

SLLC069A.ZIP (6 KB) - IBIS Model
시뮬레이션 툴

PSPICE-FOR-TI — TI 설계 및 시뮬레이션 툴용 PSpice®

TI용 PSpice®는 아날로그 회로의 기능을 평가하는 데 사용되는 설계 및 시뮬레이션 환경입니다. 완전한 기능을 갖춘 이 설계 및 시뮬레이션 제품군은 Cadence®의 아날로그 분석 엔진을 사용합니다. 무료로 제공되는 TI용 PSpice에는 아날로그 및 전력 포트폴리오뿐 아니라 아날로그 행동 모델에 이르기까지 업계에서 가장 방대한 모델 라이브러리 중 하나가 포함되어 있습니다.

TI 설계 및 시뮬레이션 환경용 PSpice는 기본 제공 라이브러리를 이용해 복잡한 혼합 신호 설계를 시뮬레이션할 수 있습니다. 레이아웃 및 제작에 (...)
시뮬레이션 툴

TINA-TI — SPICE 기반 아날로그 시뮬레이션 프로그램

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
사용 설명서: PDF
레퍼런스 디자인

TIDA-060017 — LVDS 인터페이스를 통한 SPI 신호 전송 레퍼런스 설계

This reference design demonstrates how to resolve and optimize signal integrity challenges typically found when sending SPI signals over longer distance on the same PCB or off PCB to another board in a noisy environment by transmitting SPI signals over an LVDS interface. The concept offers (...)
Design guide: PDF
회로도: PDF
패키지 다운로드
SOIC (D) 16 옵션 보기
TSSOP (PW) 16 옵션 보기

주문 및 품질

포함된 정보:
  • RoHS
  • REACH
  • 디바이스 마킹
  • 납 마감/볼 재질
  • MSL 등급/피크 리플로우
  • MTBF/FIT 예측
  • 물질 성분
  • 인증 요약
  • 지속적인 신뢰성 모니터링
포함된 정보:
  • 팹 위치
  • 조립 위치

권장 제품에는 본 TI 제품과 관련된 매개 변수, 평가 모듈 또는 레퍼런스 디자인이 있을 수 있습니다.

지원 및 교육

TI 엔지니어의 기술 지원을 받을 수 있는 TI E2E™ 포럼

콘텐츠는 TI 및 커뮤니티 기고자에 의해 "있는 그대로" 제공되며 TI의 사양으로 간주되지 않습니다. 사용 약관을 참조하십시오.

품질, 패키징, TI에서 주문하는 데 대한 질문이 있다면 TI 지원을 방문하세요. ​​​​​​​​​​​​​​

동영상