SN74LVC16T245

활성

구성 가능한 레벨 변환/전압 변환을 지원하는 16비트 듀얼 공급 버스 트랜시버

제품 상세 정보

Technology family LVC Applications GPIO Bits (#) 16 High input voltage (min) (V) 1.08 High input voltage (max) (V) 5.5 Vout (min) (V) 1.65 Vout (max) (V) 5.5 Data rate (max) (Mbps) 200 IOH (max) (mA) -32 IOL (max) (mA) 32 Supply current (max) (µA) 30 Features Overvoltage tolerant inputs, Partial power down (Ioff), Vcc isolation Input type Bidirectional, CMOS, Overvoltage Tolerant Output type 3-State, Balanced CMOS, Push-Pull Rating Catalog Operating temperature range (°C) -40 to 85
Technology family LVC Applications GPIO Bits (#) 16 High input voltage (min) (V) 1.08 High input voltage (max) (V) 5.5 Vout (min) (V) 1.65 Vout (max) (V) 5.5 Data rate (max) (Mbps) 200 IOH (max) (mA) -32 IOL (max) (mA) 32 Supply current (max) (µA) 30 Features Overvoltage tolerant inputs, Partial power down (Ioff), Vcc isolation Input type Bidirectional, CMOS, Overvoltage Tolerant Output type 3-State, Balanced CMOS, Push-Pull Rating Catalog Operating temperature range (°C) -40 to 85
SSOP (DL) 48 164.358 mm² 15.88 x 10.35 TSSOP (DGG) 48 101.25 mm² 12.5 x 8.1 TVSOP (DGV) 48 62.08 mm² 9.7 x 6.4
  • Control Inputs VIH/VIL Levels are Referenced to
    VCCA Voltage
  • VCC Isolation Feature – If Either VCC Input is at
    GND, Both Ports are in the High-Impedance State
  • Overvoltage-Tolerant Inputs and Outputs Allow
    Mixed Voltage-Mode Data Communications
  • Fully Configurable Dual-Rail Design Allows Each
    Port to Operate Over the Full 1.65-V to 5.5-V
    Power-Supply Range
  • Ioff Supports Partial-Power-Down Mode Operation
  • Latch-Up Performance Exceeds 100 mA Per
    JESD 78, Class II
  • ESD Protection Exceeds JESD 22
  • Control Inputs VIH/VIL Levels are Referenced to
    VCCA Voltage
  • VCC Isolation Feature – If Either VCC Input is at
    GND, Both Ports are in the High-Impedance State
  • Overvoltage-Tolerant Inputs and Outputs Allow
    Mixed Voltage-Mode Data Communications
  • Fully Configurable Dual-Rail Design Allows Each
    Port to Operate Over the Full 1.65-V to 5.5-V
    Power-Supply Range
  • Ioff Supports Partial-Power-Down Mode Operation
  • Latch-Up Performance Exceeds 100 mA Per
    JESD 78, Class II
  • ESD Protection Exceeds JESD 22

This 16-bit noninverting bus transceiver uses two separate configurable power-supply rails. The A port is designed to track VCCA. VCCA accepts any supply voltage from 1.65 V to 5.5 V. The B port is designed to track VCCB. VCCB accepts any supply voltage from 1.65 V to 5.5 V. This allows for universal low-voltage bidirectional translation between any of the 1.8-V, 2.5-V, 3.3-V, and 5-V voltage nodes.

The SN74LVC16T245 device is designed for asynchronous communication between two data buses. The logic levels of the direction-control (DIR) input and the output-enable (OE) input activate either the B-port outputs or the A-port outputs or place both output ports into the high-impedance mode. The device transmits data from the A bus to the B bus when the B-port outputs are activated, and from the B bus to the A bus when the A-port outputs are activated. The input circuitry on both A and B ports always is active and must have a logic HIGH or LOW level applied to prevent excess ICC and ICCZ.

The SN74LVC16T245 control pins (1DIR, 2DIR, 1OE, and 2OE) are supplied by VCCA.

This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

The VCC isolation feature ensures that if either VCC input is at GND, then both ports are in the high-impedance state. To ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

This 16-bit noninverting bus transceiver uses two separate configurable power-supply rails. The A port is designed to track VCCA. VCCA accepts any supply voltage from 1.65 V to 5.5 V. The B port is designed to track VCCB. VCCB accepts any supply voltage from 1.65 V to 5.5 V. This allows for universal low-voltage bidirectional translation between any of the 1.8-V, 2.5-V, 3.3-V, and 5-V voltage nodes.

The SN74LVC16T245 device is designed for asynchronous communication between two data buses. The logic levels of the direction-control (DIR) input and the output-enable (OE) input activate either the B-port outputs or the A-port outputs or place both output ports into the high-impedance mode. The device transmits data from the A bus to the B bus when the B-port outputs are activated, and from the B bus to the A bus when the A-port outputs are activated. The input circuitry on both A and B ports always is active and must have a logic HIGH or LOW level applied to prevent excess ICC and ICCZ.

The SN74LVC16T245 control pins (1DIR, 2DIR, 1OE, and 2OE) are supplied by VCCA.

This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

The VCC isolation feature ensures that if either VCC input is at GND, then both ports are in the high-impedance state. To ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

다운로드 스크립트와 함께 비디오 보기 동영상

기술 문서

star =TI에서 선정한 이 제품의 인기 문서
검색된 결과가 없습니다. 검색어를 지우고 다시 시도하십시오.
모두 보기28
유형 직함 날짜
* Data sheet SN74LVC16T245 16-bit Dual-Supply Bus Transceiver With Configurable Level-Shifting / Voltage Translation and Tri-State Outputs datasheet (Rev. B) PDF | HTML 2015/04/28
Application note Implications of Slow or Floating CMOS Inputs (Rev. E) 2021/07/26
Selection guide Voltage Translation Buying Guide (Rev. A) 2021/04/15
Selection guide Little Logic Guide 2018 (Rev. G) 2018/07/06
Selection guide Logic Guide (Rev. AB) 2017/06/12
Application note How to Select Little Logic (Rev. A) 2016/07/26
Application note Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 2015/12/02
User guide LOGIC Pocket Data Book (Rev. B) 2007/01/16
Product overview Design Summary for WCSP Little Logic (Rev. B) 2004/11/04
Application note Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 2004/07/08
Application note Selecting the Right Level Translation Solution (Rev. A) 2004/06/22
User guide Signal Switch Data Book (Rev. A) 2003/11/14
Application note Use of the CMOS Unbuffered Inverter in Oscillator Circuits 2003/11/06
User guide LVC and LV Low-Voltage CMOS Logic Data Book (Rev. B) 2002/12/18
Application note Texas Instruments Little Logic Application Report 2002/11/01
Application note TI IBIS File Creation, Validation, and Distribution Processes 2002/08/29
More literature Standard Linear & Logic for PCs, Servers & Motherboards 2002/06/13
Application note 16-Bit Widebus Logic Families in 56-Ball, 0.65-mm Pitch Very Thin Fine-Pitch BGA (Rev. B) 2002/05/22
Application note Power-Up 3-State (PU3S) Circuits in TI Standard Logic Devices 2002/05/10
More literature STANDARD LINEAR AND LOGIC FOR DVD/VCD PLAYERS 2002/03/27
Application note Migration From 3.3-V To 2.5-V Power Supplies For Logic Devices 1997/12/01
Application note Bus-Interface Devices With Output-Damping Resistors Or Reduced-Drive Outputs (Rev. A) 1997/08/01
Application note CMOS Power Consumption and CPD Calculation (Rev. B) 1997/06/01
Application note LVC Characterization Information 1996/12/01
Application note Input and Output Characteristics of Digital Integrated Circuits 1996/10/01
Application note Live Insertion 1996/10/01
Design guide Low-Voltage Logic (LVC) Designer's Guide 1996/09/01
Application note Understanding Advanced Bus-Interface Products Design Guide 1996/05/01

설계 및 개발

추가 조건 또는 필수 리소스는 사용 가능한 경우 아래 제목을 클릭하여 세부 정보 페이지를 확인하세요.

시뮬레이션 모델

SN74LVC16T245 IBIS Model

SCEM492.ZIP (56 KB) - IBIS Model
패키지 다운로드
SSOP (DL) 48 옵션 보기
TSSOP (DGG) 48 옵션 보기
TVSOP (DGV) 48 옵션 보기

주문 및 품질

포함된 정보:
  • RoHS
  • REACH
  • 디바이스 마킹
  • 납 마감/볼 재질
  • MSL 등급/피크 리플로우
  • MTBF/FIT 예측
  • 물질 성분
  • 인증 요약
  • 지속적인 신뢰성 모니터링
포함된 정보:
  • 팹 위치
  • 조립 위치

지원 및 교육

TI 엔지니어의 기술 지원을 받을 수 있는 TI E2E™ 포럼

콘텐츠는 TI 및 커뮤니티 기고자에 의해 "있는 그대로" 제공되며 TI의 사양으로 간주되지 않습니다. 사용 약관을 참조하십시오.

품질, 패키징, TI에서 주문하는 데 대한 질문이 있다면 TI 지원을 방문하세요. ​​​​​​​​​​​​​​

동영상