產品詳細資料

Technology family LS Bits (#) 16 Rating Catalog Operating temperature range (°C) 0 to 70
Technology family LS Bits (#) 16 Rating Catalog Operating temperature range (°C) 0 to 70
PDIP (N) 16 181.42 mm² 19.3 x 9.4 SOIC (D) 16 59.4 mm² 9.9 x 6 SOP (NS) 16 79.56 mm² 10.2 x 7.8
  • Separate Read/Write Addressing Permits Simultaneous Reading and Writing
  • Fast Access Times…Typically 20 ns
  • Organized as 4 Words of 4 Bits
  • Expandable to 512 Words of n-Bits
  • For Use as:
    • Scratch-Pad Memory
    • Buffer Storage between Processors
    • Bit Storage in Fast Multiplication Designs
  • 3-State Outputs
  • SN54LS170 and SN74LS170 Are Similar But Have Open-Collector Outputs

 

  • Separate Read/Write Addressing Permits Simultaneous Reading and Writing
  • Fast Access Times…Typically 20 ns
  • Organized as 4 Words of 4 Bits
  • Expandable to 512 Words of n-Bits
  • For Use as:
    • Scratch-Pad Memory
    • Buffer Storage between Processors
    • Bit Storage in Fast Multiplication Designs
  • 3-State Outputs
  • SN54LS170 and SN74LS170 Are Similar But Have Open-Collector Outputs

 

The SN54LS670 and SN74LS670 MSI 16-bit TTL register files incorporate the equivalent of 98 gates. The register file is organized as 4 words of 4 bits each and separate on-chip decoding is provided for addressing the four word locations to either write-in or retrieve data. This permits simultaneous writing into one location and reading from another word location.

Four data inputs are available which are used to supply the 4-bit word to be stored. Location of the word is determined by the write-address inputs A and B in conjunction with a write-enable signal. Data applied at the inputs should be in its true form. That is, if a high-level signal is desired from the output, a high-level is applied at the data input for that particular bit location. The latch inputs are arranged so that new data will be accepted only if both internal address gate inputs are high. When this condition exists, data at the D input is transferred to the latch output. When the write-enable input, G\W, is high, the data inputs are inhibited and their levels can cause no change in the information stored in the internal latches. When the read-enable input, G\R, is high, the data outputs are inhibited and go into the high-impedance state.

The individual address lines permit direct acquisition of data stored in any four of the latches. Four individual decoding gates are used to complete the address for reading a word. When the read address is made in conjunction with the read-enable signal, the word appears at the four outputs.

This arrangement — data-entry addressing separate from data-read addressing and individual sense line — eliminates recovery times, permits simultaneous reading and writing, and is limited in speed only by the write time (27 nanoseconds typical) and the read time (24 nanoseconds typical). The register file has a nondestructive readout in that data is not lost when addressed.

All inputs except read enable and write enable are buffered to lower the drive requirements to one Series 54LS/74LS standard load, and input-clamping diodes minimize switching transients to simplify system design. High-speed, double-ended AND-OR-INVERT gates are employed for the read-address function and have high-sink-current, three-state outputs. Up to 128 of these outputs may be bus connected for increasing the capacity up to 512 words. Any number of these registers may be paralleled to provide n-bit word length.

The SN54LS670 is characterized for operation over the full military temperature range of -55°C to 125°C; the SN74LS670 is characterized for operation from 0°C to 70°C.

 

The SN54LS670 and SN74LS670 MSI 16-bit TTL register files incorporate the equivalent of 98 gates. The register file is organized as 4 words of 4 bits each and separate on-chip decoding is provided for addressing the four word locations to either write-in or retrieve data. This permits simultaneous writing into one location and reading from another word location.

Four data inputs are available which are used to supply the 4-bit word to be stored. Location of the word is determined by the write-address inputs A and B in conjunction with a write-enable signal. Data applied at the inputs should be in its true form. That is, if a high-level signal is desired from the output, a high-level is applied at the data input for that particular bit location. The latch inputs are arranged so that new data will be accepted only if both internal address gate inputs are high. When this condition exists, data at the D input is transferred to the latch output. When the write-enable input, G\W, is high, the data inputs are inhibited and their levels can cause no change in the information stored in the internal latches. When the read-enable input, G\R, is high, the data outputs are inhibited and go into the high-impedance state.

The individual address lines permit direct acquisition of data stored in any four of the latches. Four individual decoding gates are used to complete the address for reading a word. When the read address is made in conjunction with the read-enable signal, the word appears at the four outputs.

This arrangement — data-entry addressing separate from data-read addressing and individual sense line — eliminates recovery times, permits simultaneous reading and writing, and is limited in speed only by the write time (27 nanoseconds typical) and the read time (24 nanoseconds typical). The register file has a nondestructive readout in that data is not lost when addressed.

All inputs except read enable and write enable are buffered to lower the drive requirements to one Series 54LS/74LS standard load, and input-clamping diodes minimize switching transients to simplify system design. High-speed, double-ended AND-OR-INVERT gates are employed for the read-address function and have high-sink-current, three-state outputs. Up to 128 of these outputs may be bus connected for increasing the capacity up to 512 words. Any number of these registers may be paralleled to provide n-bit word length.

The SN54LS670 is characterized for operation over the full military temperature range of -55°C to 125°C; the SN74LS670 is characterized for operation from 0°C to 70°C.

 

下載 觀看有字幕稿的影片 影片

您可能會感興趣的類似產品

open-in-new 比較替代產品
引腳對引腳的功能與所比較的產品相同
CD74HC670 現行 高速 CMOS 邏輯 4 x 4 暫存器檔案 Voltage range (2V to 6V), average drive strength (8mA), average propagation delay (20ns)
功能相似於所比較的產品
SN74AHCT595 現行 具有三態輸出暫存器和 TTL 相容 CMOS 輸入的八位元移位暫存器 Larger voltage range (2V to 5.5V)
SN74LV123A 現行 雙路可重觸發單穩多頻振盪器 Voltage range (2V to 5.5V), average drive strength (12mA), average propagation delay (9ns)

技術文件

star =TI 所選的此產品重要文件
找不到結果。請清除您的搜尋條件,然後再試一次。
檢視所有 11
類型 標題 日期
* Data sheet 4-by-4 Register Files With 3-State Outputs datasheet 1988年 3月 1日
Application note Power-Up Behavior of Clocked Devices (Rev. B) PDF | HTML 2022年 12月 15日
Selection guide Logic Guide (Rev. AB) 2017年 6月 12日
Application note Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 2015年 12月 2日
User guide LOGIC Pocket Data Book (Rev. B) 2007年 1月 16日
Application note Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 2004年 7月 8日
Application note TI IBIS File Creation, Validation, and Distribution Processes 2002年 8月 29日
Application note Designing With Logic (Rev. C) 1997年 6月 1日
Application note Designing with the SN54/74LS123 (Rev. A) 1997年 3月 1日
Application note Input and Output Characteristics of Digital Integrated Circuits 1996年 10月 1日
Application note Live Insertion 1996年 10月 1日

設計與開發

如需其他條款或必要資源,請按一下下方的任何標題以檢視詳細頁面 (如有)。

開發板

14-24-LOGIC-EVM — 適用於 14 針腳至 24 針腳 D、DB、DGV、DW、DYY、NS 和 PW 封裝的邏輯產品通用評估模組

14-24-LOGIC-EVM 評估模組 (EVM) 設計用於支援任何 14 針腳至 24 針腳 D、DW、DB、NS、PW、DYY 或 DGV 封裝的任何邏輯裝置。

使用指南: PDF | HTML
TI.com 無法提供
封裝 引腳 下載
PDIP (N) 16 檢視選項
SOIC (D) 16 檢視選項
SOP (NS) 16 檢視選項

訂購與品質

內含資訊:
  • RoHS
  • REACH
  • 產品標記
  • 鉛塗層/球物料
  • MSL 等級/回焊峰值
  • MTBF/FIT 估算值
  • 材料內容
  • 資格摘要
  • 進行中可靠性監測
內含資訊:
  • 晶圓廠位置
  • 組裝地點

支援與培訓

內含 TI 工程師技術支援的 TI E2E™ 論壇

內容係由 TI 和社群貢獻者依「現狀」提供,且不構成 TI 規範。檢視使用條款

若有關於品質、封裝或訂購 TI 產品的問題,請參閱 TI 支援。​​​​​​​​​​​​​​

影片