SLOS729D October   2011  – November 2015 AFE5808A

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (continued)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Electrical Characteristics
    6. 7.6  Digital Characteristics
    7. 7.7  Switching Characteristics
    8. 7.8  Timing Requirements
    9. 7.9  Output Interface Timing
    10. 7.10 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Low-Noise Amplifier (LNA)
      2. 8.3.2 Voltage-Controlled Attenuator
      3. 8.3.3 Programmable Gain Amplifier
      4. 8.3.4 Analog-to-Digital Converter
      5. 8.3.5 Continuous-Wave (CW) Beamformer
        1. 8.3.5.1 16 × ƒcw Mode
        2. 8.3.5.2 8 × ƒcw and 4 × ƒcw Modes
        3. 8.3.5.3 1 × ƒcw Mode
      6. 8.3.6 Equivalent Circuits
      7. 8.3.7 LVDS Output Interface Description
    4. 8.4 Device Functional Modes
      1. 8.4.1 TGC Mode
      2. 8.4.2 CW Mode
      3. 8.4.3 TGC + CW Mode
      4. 8.4.4 Test Modes
        1. 8.4.4.1 ADC Test Modes
        2. 8.4.4.2 VCA Test Mode
      5. 8.4.5 Power Management
        1. 8.4.5.1 Power and Performance Optimization
        2. 8.4.5.2 Power Management Priority
        3. 8.4.5.3 Partial Power Up and Power Down Mode
        4. 8.4.5.4 Complete Power-Down Mode
        5. 8.4.5.5 Power Saving in CW Mode
    5. 8.5 Programming
      1. 8.5.1 Serial Register Timing
        1. 8.5.1.1 Serial Register Write Description
        2. 8.5.1.2 Register Readout Description
    6. 8.6 Register Maps
      1. 8.6.1 ADC Register Map
      2. 8.6.2 ADC Register/Digital Processing Description
        1. 8.6.2.1  AVERAGING_ENABLE: Address: 2[11]
        2. 8.6.2.2  ADC_OUTPUT_FORMAT: Address: 4[3]
        3. 8.6.2.3  DIGITAL_GAIN_ENABLE: Address: 3[12]
        4. 8.6.2.4  DIGITAL_HPF_ENABLE
        5. 8.6.2.5  DIGITAL_HPF_FILTER_K_CHX
        6. 8.6.2.6  LOW_FREQUENCY_NOISE_SUPPRESSION: Address: 1[11]
        7. 8.6.2.7  LVDS_OUTPUT_RATE_2X: Address: 1[14]
        8. 8.6.2.8  CHANNEL_OFFSET_SUBSTRACTION_ENABLE: Address: 3[8]
        9. 8.6.2.9  SERIALIZED_DATA_RATE: Address: 3[14:13]
        10. 8.6.2.10 TEST_PATTERN_MODES: Address: 2[15:13]
        11. 8.6.2.11 SYNC_PATTERN: Address: 10[8]
      3. 8.6.3 VCA Register Map
      4. 8.6.4 AFE5808A VCA Register Description
        1. 8.6.4.1 LNA Input Impedances Configuration (Active Termination Programmability)
        2. 8.6.4.2 Programmable Gain for CW Summing Amplifier
        3. 8.6.4.3 Programmable Phase Delay for CW Mixer
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 LNA Configuration
          1. 9.2.2.1.1 LNA Input Coupling and Decoupling
          2. 9.2.2.1.2 LNA Noise Contribution
          3. 9.2.2.1.3 Active Termination
          4. 9.2.2.1.4 LNA Gain Switch Response
        2. 9.2.2.2 Voltage-Controlled-Attenuator
        3. 9.2.2.3 CW Operation
          1. 9.2.2.3.1 CW Summing Amplifier
          2. 9.2.2.3.2 CW Clock Selection
          3. 9.2.2.3.3 CW Supporting Circuits
        4. 9.2.2.4 ADC Operation
          1. 9.2.2.4.1 ADC Clock Configurations
          2. 9.2.2.4.2 ADC Reference Circuit
      3. 9.2.3 Application Curves
    3. 9.3 Do's and Don'ts
      1. 9.3.1 Driving the Inputs (Analog or Digital) Beyond the Power-Supply Rails
      2. 9.3.2 Driving the Device Signal Input With an Excessively High Level Signal
      3. 9.3.3 Driving the VCNTL Signal With an Excessive Noise Source
      4. 9.3.4 Using a Clock Source With Excessive Jitter, an Excessively Long Input Clock Signal Trace, or Having Other Signals Coupled to the ADC or CW Clock Signal Trace
      5. 9.3.5 LVDS Routing Length Mismatch
      6. 9.3.6 Failure to Provide Adequate Heat Removal
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Related Documentation
    2. 12.2 Community Resources
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Supply voltage AVDD –0.3 3.9 V
AVDD_ADC –0.3 2.2 V
AVDD_5V –0.3 6 V
DVDD –0.3 2.2 V
Voltage between AVSS and LVSS –0.3 0.3 V
Voltage at analog inputs and digital inputs –0.3 min [3.6, AVDD + 0.3] V
Peak solder temperature(2) 260 °C
Maximum junction temperature (TJ), any condition 105 °C
Operating temperature 0 85 °C
Storage temperature, Tstg –55 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) Device complies with JSTD-020D.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±1000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±250
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

MIN MAX UNIT
AVDD 3.15 3.6 V
AVDD_ADC 1.7 1.9 V
DVDD 1.7 1.9 V
AVDD_5V 4.75 5.5 V
Ambient temperature, TA 0 85 °C

7.4 Thermal Information

THERMAL METRIC(1) AFE5808A UNIT
ZCF (NFBGA)
135 PINS
RθJA Junction-to-ambient thermal resistance 34.1 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 5 °C/W
RθJB Junction-to-board thermal resistance 11.5 °C/W
ψJT Junction-to-top characterization parameter 0.2 °C/W
ψJB Junction-to-board characterization parameter 10.8 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance N/A °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics

At AVDD_5 V = 5 V, AVDD = 3.3 V, AVDD_ADC = 1.8 V, DVDD = 1.8 V, ac-coupled with 0.1 µF at INP and bypassed to ground with 15 nF at INM, no active termination, VCNTL = 0 V, fIN = 5 MHz, LNA = 18 dB, PGA = 24 dB, 14 bit, sample
rate = 65 MSPS, LPF filter = 15 MHz, low-noise mode, VOUT = –1 dBFS, internal 500-Ω CW feedback resistor, CMOS CW clocks, ADC configured in internal reference mode, single-ended VCNTL mode, VCNTLM = GND, at ambient temperature
TA = 25°C (unless otherwise noted). Min and max values are specified across full-temperature range with AVDD_5 V = 5 V,
AVDD = 3.3 V, AVDD_ADC = 1.8 V, DVDD = 1.8 V
PARAMETER TEST CONDITION MIN TYP MAX UNIT
TGC FULL SIGNAL CHANNEL (LNA+VCAT+LPF+ADC)
en (RTI) Input voltage noise over LNA Gain (low noise mode) Rs = 0 Ω, f = 2 MHz, LNA = 24 dB, 18 dB, and 12 dB, PGA = 24 dB 0.76/0.83/1.16 nV/√Hz
Rs = 0 Ω, f = 2 MHz, LNA = 24 dB, 18 dB, and 12 dB, PGA = 30 dB 0.75/0.86/1.12
Input voltage noise over LNA Gain (low power mode) Rs = 0 Ω, f = 2 MHz, LNA = 24 dB, 18 dB, and 12 dB, PGA = 24 dB 1.1/1.2/1.45 nV/√Hz
Rs = 0 Ω, f = 2 MHz, LNA = 24 dB, 18 dB, and 12 dB, PGA = 30 dB 1.1/1.2/1.45
Input Voltage Noise over LNA Gain (Medium Power Mode) Rs = 0 Ω, f = 2 MHz, LNA = 24 dB, 18 dB, and 12 dB, PGA = 24 dB 1/1.05/1.25 nV/√Hz
Rs = 0 Ω, f = 2 MHz, LNA = 24 dB, 18 dB, and 12 dB, PGA = 30 dB 0.95/1.0/1.2
Input referred current noise Low Noise Mode/Medium Power Mode/Low Power Mode 2.7/2.1/2 pA/√Hz
NF Noise figure Rs = 200 Ω, 200-Ω active termination, PGA = 24 dB, LNA = 12 dB, 18 dB, and 24 dB 3.85/2.4/1.8 dB
Rs = 100 Ω, 100-Ω active termination, PGA = 24 dB, LNA = 12 dB, 18 dB, and 24 dB 5.3/3.1/2.3 dB
VMAX Maximum Linear Input Voltage LNA gain = 24 dB, 18 dB, and 12 dB 250/500/1000 mVPP
VCLAMP Clamp Voltage Reg52[10:9] = 0, LNA = 24 dB, 18 dB, and 12 dB 350/600/1150
PGA Gain Low noise mode 24/30 dB
Medium and low power mode 24/28.5
Total gain LNA = 24 dB, PGA = 30 dB, Low noise mode 54 dB
LNA = 2 4dB, PGA = 30 dB, Med power mode 52.5
LNA = 24 dB, PGA = 30 dB, Low power mode 52.5
Ch-CH Noise Correlation Factor without Signal (2) Summing of 8 channels 0
Ch-CH Noise Correlation Factor with Signal (2) Full band (VCNTL = 0/0.8) 0.15/0.17
1MHz band over carrier (VCNTL= 0/0.8) 0.18/0.75
Signal to Noise Ratio (SNR) VCNTL = 0.6 V (22-dB total channel gain) 68 70 dBFS
VCNTL = 0, LNA = 18 dB, PGA = 24 dB 59.3 63
VCNTL = 0, LNA = 24 dB, PGA = 24 dB 58
Narrow Band SNR SNR over 2-MHz band around carrier at VCNTL = 0.6 V ( 22 dB total gain) 75 77 dBFS
Input Common-mode Voltage At INP and INM pins 2.4 V
Input resistance 8
Preset active termination enabled 50/100/200/400 Ω
Input capacitance 20 pF
Input Control Voltage VCNTLP – VCNTLM 0 1.5 V
Common-mode voltage VCNTLP and VCNTLM 0.75 V
Gain Range -40 dB
Gain Slope VCNTL= 0.1 to 1.1 V 35 dB/V
Input Resistance Between VCNTLP and VCNTLM 200
Input Capacitance Between VCNTLP and VCNTLM 1 pF
TGC Response Time VCNT L= 0 to 1.5-V step function 1.5 µs
3rd order-Low-pass Filter 10, 15, 20, 30 MHz
Settling time for change in LNA gain 14 µs
Settling time for change in active termination setting 1 µs
AC ACCURACY
LPF Bandwidth tolerance ±5%
CH-CH group delay variation 2 MHz to 15 MHz 2 ns
CH-CH Phase variation 15-MHz signal 11 Degree
Gain matching 0 V < VCNTL < 0.1 V (Dev-to-Dev) ±0.5 dB
0.1 V < VCNTL < 1.1 V(Dev-to-Dev) –0.9 ±0.5 0.9
0.1 V < VCNTL < 1.1 V(Dev-to-Dev) Temp = 0°C and 85°C –1.1 ±0.5 1.1
1.1 V < VCNTL < 1.5 V(Dev-to-Dev) ±0.5
Gain matching Channel-to-channel ±0.25 dB
Output offset Vcntl= 0, PGA = 30 dB, LNA = 24 dB –75 75 LSB
AC PERFORMANCE
HD2 Second-Harmonic Distortion fIN = 2 MHz; VOUT = –1 dBFS –60 dBc
fIN = 5 MHz; VOUT = –1 dBFS –60
fIN = 5 MHz; VIN= 500 mVPP,
VOUT = –1 dBFS, LNA = 18 dB, VCNTL= 0.88 V
–55
fIN = 5 MHz; Vin = 250 mVPP,
VOUT =–1 dBFS, LNA = 24 dB, VCNTL= 0.88 V
–55
HD3 Third-Harmonic Distortion fIN = 2 MHz; VOUT = –1 dBFS –55 dBc
fIN = 5 MHz; VOUT = –1 dBFS –55
fIN = 5 MHz; VIN = 500 mVPP,
VOUT = –1 dBFS, LNA = 18 dB, VCNTL= 0.88 V
–55
fIN = 5 MHz; VIN = 2 50 mVPP,
VOUT = –1 dBFS, LNA = 24 dB, VCNTL= 0.88 V
–55
THD Total Harmonic Distortion fIN = 2 MHz; VOUT= –1 dBFS –55 dBc
fIN = 5 MHz; VOUT= –1 dBFS –55
IMD3 Intermodulation distortion f1 = 5 MHz at –1 dBFS,
f2 = 5.01 MHz at –27 dBFS
–60 dBc
XTALK Cross-talk fIN = 5 MHz; VOUT= –1 dBFS –65 dB
Phase Noise 1 kHz off 5 MHz (VCNTL= 0 V) –132 dBc/Hz
LNA
Input Referred Voltage Noise Rs = 0 Ω, f = 2MHz, Rin = High Z, Gain = 24/18/12 dB 0.63/0.70/0.9 nV/√Hz
High-Pass Filter –3 dB Cut-off Frequency 50/100/150/200 KHz
LNA linear output 4 VPP
VCAT+ PGA
VCAT Input Noise 0-dB/–40-dB attenuation 2/10.5 nV/√Hz
PGA Input Noise 24 dB/30 dB 1.75 nV/√Hz
-3dB HPF cut-off Frequency 80 kHz
CW DOPPLER
en (RTI) Input voltage noise (CW) 1-channel mixer, LNA = 24 dB, 500-Ω feedback resistor 0.8 nV/√Hz
8-channel mixer, LNA = 24 dB, 62.5-Ω feedback resistor 0.33
en (RTO) Output voltage noise (CW) 1-channel mixer, LNA = 24 dB, 500-Ω feedback resistor 12 nV/√Hz
8-channel mixer, LNA = 24 dB, 62.5-Ω feedback resistor 5
en (RTI) Input voltage noise (CW) 1-channel mixer, LNA = 18 dB, 500-Ω feedback resistor 1.1 nV/√Hz
8-channel mixer, LNA = 18 dB, 62.5-Ω feedback resistor 0.5
en (RTO) Output voltage noise (CW) 1-channel mixer, LNA = 18 dB, 500-Ω feedback resistor 8.1 nV/√Hz
8-channel mixer, LNA = 18 dB, 62.5-Ω feedback resistor 4.0
NF Noise figure Rs = 100 Ω, RIN = High Z, fIN = 2 MHz (LNA, I/Q mixer and summing amplifier and filter) 1.8 dB
fCW CW Operation Range (3) CW signal carrier frequency 8 MHz
CW Clock frequency 1X CLK (16X mode) 8 MHz
16X CLK(16X mode) 128(4)
4X CLK (4X mode) 32
AC coupled LVDS clock amplitude CLKM_16X-CLKP_16X; CLKM_1X-CLKP_1X 0.7 VPP
AC coupled LVPECL clock amplitude 1.6
CLK duty cycle 1X and 16X CLKs 33% 66%
Common-mode voltage Internal provided 2.5 V
VCMOS CMOS Input clock amplitude 4 5 V
CW Mixer conversion loss 4 dB
CW Mixer phase noise 1 kHz off 2-MHz carrier 156 dBc/Hz
DR Input dynamic range fIN = 2 MHz, LNA = 24/18/12 dB 160/164/165 dBFS/Hz
IMD3 Intermodulation distortion f1 = 5 MHz, f2 = 5.01 MHz, both tones at –8.5 dBm amplitude, 8 channels summed up in-phase, CW feedback resistor = 87 Ω –50 dBc
f1 = 5 MHz, F2 = 5.01 MHz, both tones at –8.5 dBm amplitude, Single channel case, CW feed back resistor = 500 Ω –60 dBc
I/Q Channel gain matching 16X mode ±0.04 dB
I/Q Channel phase matching 16X mode ±0.1 Degree
I/Q Channel gain matching 4X mode ±0.04 dB
I/Q Channel phase matching 4X mode ±0.1 Degree
Image rejection ratio fIN = 2.01 MHz, 300-mV input amplitude, CW clock frequency = 2 MHz –50 dBc
CW SUMMING AMPLIFIER
VCMO Common-mode voltage Summing amplifier inputs/outputs 1.5 V
Summing amplifier output 4 VPP
Input referred voltage noise 100 Hz 2 nV/√Hz
1 kHz 1.2 nV/√Hz
2 kHz to 100 MHz 1 nV/√Hz
Input referred current noise 2.5 pA/√Hz
Unit gain bandwidth 200 MHz
Max output current Linear operation range 20 mApp
ADC SPECIFICATIONS
Sample rate 10 65 MSPS
SNR Signal-to-noise ratio Idle channel SNR of ADC 14b 77 dBFS
Internal reference mode REFP 1.5 V
REFM 0.5 V
External reference mode VREF_IN voltage 1.4 V
VREF_IN current 50 µA
ADC input full-scale range 2 VPP
LVDS Rate 65 MSPS at 14 bit 910 Mbps
POWER DISSIPATION
AVDD Voltage 3.15 3.3 3.6 V
AVDD_ADC Voltage 1.7 1.8 1.9 V
AVDD_5V Voltage 4.75 5 5.5 V
DVDD Voltage 1.7 1.8 1.9 V
Total power dissipation per channel TGC low-noise mode, 65 MSPS 158 190 mW/CH
TGC low-noise mode, 40 MSPS 145
TGC medium-power mode, 40 MSPS 114
TGC low-power mode, 40 MSPS 101.5
AVDD (3.3V) Current TGC low-noise mode, no signal 202 240 mA
TGC medium-power mode, no signal 126
TGC low-power mode, no signal 99
CW-mode, no signal 147 170
TGC low-noise mode, 500-mVPP input,1% duty cycle 210
TGC medium-power mode, 500-mVPP input, 1% duty cycle 133
TGC low-power mode, 500-mVPP input, 1% duty cycle 105
CW-mode, 500-mVPP input 375
AVDD_5V Current TGC mode, no signal 25.5 35 mA
CW mode, no signal, 16X clock = 32 MHz 32
TGC mode, 500 mVPP input,1% duty cycle 26
CW-mode, 500 mVPP input 42.5
VCA Power dissipation TGC low-noise mode, no signal 99 121 mW/CH
TGC medium-power mode, no signal 68
TGC low-power mode, no signal 55.5
TGC low-noise mode, 500 mVPP input,1% duty cycle 102.5
TGC medium-power mode, 500 mVPP Input, 1% duty cycle 71
TGC low-power mode, 500 mVPP input,1% duty cycle 59.5
CW Power dissipation No signal, ADC shutdown, CW mode, no signal, 16X clock = 32 MHz 80 mW/CH
500 mVPP input, ADC shutdown , 16X clock = 32 MHz 173
AVDD_ADC(1.8V) Current 65 MSPS 187 205 mA
DVDD(1.8V) Current 65 MSPS 77 110 mA
ADC Power dissipation/CH 65 MSPS 59 69 mW/CH
50 MSPS 51
40 MSPS 46
20 MSPS 35
Power dissipation in power down mode PDN_VCA = high, PDN_ADC = high 25 mW/CH
Complete power-down, PDN_Global = high 0.6
Power-down response time Time taken to enter power down 1 µs
Power-up response time VCA power down 2µs+1% of PDN time µs
ADC power down 1
Complete power down 2.5 ms
Power supply modulation ratio, AVDD and AVDD_5V fIN = 5 MHz, at 50-mVPP noise at 1 kHz on supply(1) –65 dBc
fIN = 5 MHz, at 50-mVPP noise at 50 kHz on supply(1) –65 dBc
Power supply rejection ratio f = 10 kHz,VCNTL = 0 V (high gain), AVDD –40 dBc
f = 10 kHz,VCNTL = 0 V (high gain), AVDD_5V –55 dBc
f = 10 kHz,VCNTL = 1 V (low gain), AVDD –50 dBc
(1) PSMR specification is with respect to input signal amplitude.
(2) Noise correlation factor is defined as Nc/(Nu+Nc), where Nc is the correlated noise power in single channel; and Nu is the uncorrelated noise power in single channel. Its measurement follows the below equation, in which the SNR of single channel signal and the SNR of summed eight channel signal are measured.
AFE5808A EQ_nc_los688.gif
(3) In the 8X, 4X, and 1X modes, higher CW signal frequencies up to 15 MHz can be supported with small degradation in performance, see application information: CW clock selection.
(4) After January, 2014, that is date code after 41XXXXX, the CW clock frequency ( 16X mode) can be supported up to 145 MHz and approximately 33 to 50% duty cycle based on additional test screening.

7.6 Digital Characteristics

Typical values are at +25°C, AVDD = 3.3 V, AVDD_5 = 5 V and AVDD_ADC = 1.8 V, DVDD = 1.8 V, 14 bit sample rate = 65 MSPS (unless otherwise noted). Minimum and maximum values are across the full temperature range: TMIN = 0°C to TMAX = 85°C.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT(1)
DIGITAL INPUTS AND OUTPUTS
VIH Logic high input voltage 2 3.3 V
VIL Logic low input voltage 0 0.3 V
Logic high input current 200 µA
Logic low input current 200 µA
Input capacitance 5 pF
VOH Logic high output voltage SDOUT pin DVDD V
VOL Logic low output voltage SDOUT pin 0 V
LVDS OUTPUTS
Output differential voltage With 100-Ω external differential termination 400 mV
Output offset voltage Common-mode voltage 1100 mV
FCLKP and FCLKM 1X clock rate 10 65 MHz
DCLKP and DCLKM 7X clock rate 70 455 MHz
6X clock rate 60 390 MHz
tsu Data setup time(2) 350 ps
th Data hold time(2) 350 ps
ADC INPUT CLOCK
CLOCK frequency 10 65 MSPS
Clock duty cycle 45% 50% 55%
Clock input amplitude, differential(VCLKP_ADC–VCLKM_ADC) Sine-wave, ac-coupled 0.5 VPP
LVPECL, ac-coupled 1.6 VPP
LVDS, ac-coupled 0.7 VPP
Common-mode voltage biased internally 1 V
Clock input amplitude VCLKP_ADC (single-ended) CMOS clock 1.8 VPP
(1) The DC specifications refer to the condition where the LVDS outputs are not switching, but are permanently at a valid logic level 0 or 1 with 100-Ω external termination.
(2) Setup and hold time specifications take into account the effect of jitter on the output data and clock. These specifications also assume that the data and clock paths are perfectly matched within the receiver. Any mismatch in these paths within the receiver would appear as reduced timing margins

7.7 Switching Characteristics

Typical values are at 25°C, AVDD_5V = 5 V, AVDD = 3.3 V, AVDD_ADC = 1.8 V, DVDD = 1.8 V, differential clock, CLOAD = 5 pF, RLOAD = 100 Ω, 14 bit, sample rate = 65MSPS (unless otherwise noted). Minimum and maximum values are across the full temperature range TMIN = 0°C to TMAX = 85°C with AVDD_5V = 5 V, AVDD = 3.3 V, AVDD_ADC = 1.8 V, DVDD = 1.8 V(1)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ta Aperture delay The delay in time between the rising edge of the input sampling clock and the actual time at which the sampling occurs 0.7 3 ns
Aperture delay matching Across channels within the same device ±150 ps
tj Aperture jitter 450 Fs rms
ADC latency Default, after reset, or 0 x 2 [12] = 1, LOW_LATENCY = 1 11/8 Input clock cycles
tdelay Data and frame clock delay Input clock rising edge (zero cross) to frame clock rising edge (zero cross) minus 3/7 of the input clock period (T). 3 5.4 7 ns
Δtdelay Delay variation At fixed supply and 20°C T difference. Device to device –1 1 ns
tRISE Data rise time Rise time measured from –100 to 100 mV, fall time measured from 100 mV to –100 mV, 10 MHz < fCLKIN < 65 MHz 0.14 ns
tFALL Data fall time 0.15
tFCLKRISE Frame clock rise time Rise time measured from –100 mV to 100 mV, fall time measured from 100 mV to –100 mV, 10 MHz < fCLKIN < 65 MHz 0.14 ns
tFCLKFALL Frame clock fall time 0.15
Frame clock duty cycle Zero crossing of the rising edge to zero crossing of the falling edge 48% 50% 52%
tDCLKRISE Bit clock rise time Rise time measured from –100 to 100 mV, fall time measured from 100 mV to –100 mV, 10 MHz < fCLKIN < 65 MHz 0.13 ns
tDCLKFALL Bit clock fall time 0.12
Bit clock duty cycle Zero crossing of the rising edge to zero crossing of the falling edge 10 MHz < fCLKIN < 65 MHz 46% 54%
(1) Timing parameters are ensured by design and characterization; not production tested.

7.8 Timing Requirements

Minimum values across full temperature range TMIN = 0°C to TMAX = 85°C, AVDD_5V =5 V, AVDD = 3.3 V, AVDD_ADC = 1.8 V, DVDD = 1.8 V
PARAMETER DESCRIPTION MIN TYP MAX UNIT
t1 SCLK period 50 ns
t2 SCLK high time 20 ns
t3 SCLK low time 20 ns
t4 Data setup time 5 ns
t5 Data hold time 5 ns
t6 SEN fall to SCLK rise 8 ns
t7 Time between last SCLK rising edge to SEN rising edge 8 ns
t8 SDOUT delay 12 20 28 ns

7.9 Output Interface Timing(1)(2)(3)

fCLKIN,
INPUT CLOCK FREQUENCY
SETUP TIME (tsu), ns HOLD TIME (th), ns tPROG = (3/7)x T + tdelay, ns
DATA VALID TO BIT CLOCK ZERO-CROSSING BIT CLOCK ZERO-CROSSING TO DATA INVALID INPUT CLOCK ZERO-CROSS (rising edge) TO FRAME CLOCK ZERO-CROSS (rising edge)
MHz MIN TYP MAX MIN TYP MAX MIN TYP MAX
65/14bit 0.24 0.37 0.24 0.38 11 12 12.5
50/14bit 0.41 0.54 0.46 0.57 13 13.9 14.4
40/14bit 0.55 0.70 0.61 0.73 15 16 16.7
30/14bit 0.87 1.10 0.94 1.1 18.5 19.5 20.1
20/14bit 1.30 1.56 1.46 1.6 25.7 26.7 27.3
(1) FCLK timing is the same as for the output data lines. It has the same relation to DCLK as the data pins. Setup and hold are the same for the data and the frame clock.
(2) Data valid is logic HIGH = +100 mV and logic LOW = –100 mV
(3) Timing parameters are ensured by design and characterization; not production tested.

spacer

NOTE

The previous timing data can be applied to 12-bit or 16-bit LVDS rates as well. For example, the maximum LVDS output rate at 65 MHz and 14-bit is equal to 910 MSPS, which is approximately equivalent to the rate at 56 MHz and 16-bit.

AFE5808A LVDS_tim_los688.gif Figure 1. LVDS Timing Diagrams

7.10 Typical Characteristics

at AVDD_5 V = 5 V, AVDD = 3.3 V, AVDD_ADC = 1.8 V, DVDD = 1.8 V, ac-coupled with 0.1-µF caps at INP and 15-nF caps at INM, No active termination, VCNTL = 0 V, fIN = 5 MHz, LNA = 18 dB, PGA = 24 dB, 14 bit, sample rate = 65 MSPS, LPF filter = 15 MHz, low-noise mode, VOUT = –1 dBFS, 500-Ω CW feedback resistor, CMOS 16X clock, ADC configured in internal-reference mode, single-ended VCNTL mode, VCNTLM = GND, and ambient temperature TA = 25°C (unless otherwise noted)
AFE5808A Fig2_slos729.png
Figure 2. Gain vs VCNTL
AFE5808A figure4_slos729.png
VCNTL = 0.3 V (34951 channels)
Figure 4. Gain Matching Histogram
AFE5808A figure6_slos729.png
VCNTL = 0.9 V (34951 channels)
Figure 6. Gain Matching Histogram
AFE5808A Figure 8 Input_impedance_mag_response_pg5p0_open.png
Figure 8. Input Impedance Without Active Termination (Magnitude)
AFE5808A Figure 10 Input_impedance_mag_response_pg5p0.png
Figure 10. Input Impedance With Active Termination (Magnitude)
AFE5808A Figure 12 lpf.png
Figure 12. Low-Pass Filter Response
AFE5808A Figure_14_Full_channel_hpf.gif
Figure 14. Full Channel High-Pass Filter Response at Default Register Setting
AFE5808A Figure 16 CW_PN_1CH_8CH.png
fIN = 2 MHz
Figure 16. CW Phase Noise, 1 Channel vs 8 Channel
AFE5808A Fig18_slos729.png
Figure 18. Input Referred Noise (IRN) and Low-Noise Mode
AFE5808A Fig20_slos729.png
Figure 20. IRN and Medium-Power Mode
AFE5808A Fig22_slos729.png
Figure 22. IRN and Low-Power Mode
AFE5808A Fig24_slos729.png
Figure 24. Output Referred Noise (ORN) and Low-Noise Mode
AFE5808A Fig26_slos729.png
Figure 26. ORN and Low-Power Mode
AFE5808A Fig28_slos729.png
Figure 28. ORN, PGA = 24 dB and Low Noise Mode
AFE5808A Fig30_slos729.png
Figure 30. SNR, LNA = 18 dB and Low Power Mode
AFE5808A Fig32_slos729.png
Figure 32. Noise Figure, LNA = 12 dB and Low Noise Mode
AFE5808A Fig34_slos729.png
Figure 34. Noise Figure, LNA = 24 dB and Low Noise Mode
AFE5808A Fig36_slos729.png
Figure 36. Noise Figure vs Power Modes Without Termination
AFE5808A Fig38_slos729.png
Vin = 500 mVPP and VOUT = –1 dBFS
Figure 38. HD3 vs Frequency
AFE5808A Fig40_slos729.png
LNA = 12 dB and PGA = 24 dB and VOUT = –1 dBFS
Figure 40. HD3 vs Gain
AFE5808A Fig42_slos729.png
LNA = 18 dB and PGA = 24 dB and VOUT = –1 dBFS
Figure 42. HD3 vs Gain
AFE5808A Fig44_slos729.png
LNA = 24 dB and PGA = 24 dB and VOUT = –1 dBFS
Figure 44. HD3 vs Gain
AFE5808A Fig46_slos729.png
Fout1 = –7dBFS and Fout2 = –7dBFS
Figure 46. IMD3
AFE5808A Figure 49 psmr_5v_5MHz_IF.png
100 mVPP Supply Noise With Different Frequencies
Figure 48. AVDD_5V Power Supply Modulation Ratio
AFE5808A Figure 51 psrr_5v.png
100 mVPP Supply Noise With Different Frequencies
Figure 50. AVDD_5 V Power Supply Rejection Ratio
AFE5808A Figure 53 Vcon_rising_step_response.png
LNA = 18 dB and PGA = 24 dB
Figure 52. VCNTL Response Time
AFE5808A Figure 55 neg_inp_wave_exp.png
Figure 54. Pulse Inversion Asymmetrical Negative Input
AFE5808A Figure 57 100dB_overload.png
VIN = 50 mVPP/100 µVPP, Max Gain
Figure 56. Overload Recovery Response vs INM Capacitor
AFE5808A DigitalHigh_passFR_slos729.png
Figure 58. Digital High-Pass Filter Response
AFE5808A Fig3_slos729.png
Figure 3. Gain Variation vs Temperature
AFE5808A figure5_slos729.png
VCNTL = 0.6 V (34951 channels)
Figure 5. Gain Matching Histogram
AFE5808A figure7_slos729.png
VCNTL = 0 V (1247 channels)
Figure 7. Output Offset Histogram
AFE5808A Figure 9 Input_impedance_phase_response_pg5p0_open.png
Figure 9. Input Impedance Without Active Termination (Phase)
AFE5808A Figure 11 Input_impedance_phase_response_pg5p0.png
Figure 11. Input Impedance With Active Termination (Phase)
AFE5808A Figure_13_hpf_vcaoff.gif
Figure 13. LNA High-Pass Filter Response vs Reg59 [3:2]
AFE5808A Figure 15 CW_PN_1CH.png
fIN = 2 MHz
Figure 15. CW Phase Noise
AFE5808A Figure 17 CW_PN_8CH.png
fIN = 2 MHz
Figure 17. CW Phase Noise vs Clock Modes
AFE5808A Fig19_slos729.png
Figure 19. IRN and Low-Noise Mode Enlarged Version
AFE5808A Fig21_slos729.png
Figure 21. IRN and Medium-Power Mode Enlarged Version
AFE5808A Fig23_slos729.png
Figure 23. IRN and Low-Power Mode Enlarged Version
AFE5808A Fig25_slos729.png
Figure 25. ORN and Medium-Power Mode
AFE5808A Fig27_slos729.png
Figure 27. IRN and Low-Noise Mode
AFE5808A Fig29_slos729.png
Figure 29. SNR, LNA = 18 dB and Low Noise Mode
AFE5808A Fig31_slos729.png
Figure 31. SNR vs Different Power Modes
AFE5808A Fig33_slos729.png
Figure 33. Noise Figure, LNA = 18 dB and Low Noise Mode
AFE5808A Fig35_slos729.png
Figure 35. Noise Figure vs Power Modes With 400-Ω Termination
AFE5808A Fig37_slos729.png
Vin = 500 mVPP and VOUT = –1 dBFS
Figure 37. HD2 vs Frequency
AFE5808A Fig39_slos729.png
LNA = 12 dB and PGA = 24 dB and VOUT = –1 dBFS
Figure 39. HD2 vs Gain
AFE5808A Fig41_slos729.png
LNA = 18 dB and PGA = 24 dB and VOUT = –1 dBFS
Figure 41. HD2 vs Gain
AFE5808A Fig43_slos729.png
LNA = 24 dB and PGA = 24 dB and VOUT = –1 dBFS
Figure 43. HD2 vs Gain
AFE5808A Fig45_slos729.png
Fout1 = –1 dBFS and Fout2 = –21 dBFS
Figure 45. IMD3
AFE5808A Figure 48 psmr_3v_5MHz_IF.png
100 mVPP Supply Noise With Different Frequencies
Figure 47. AVDD Power Supply Modulation Ratio
AFE5808A Figure 50 psrr_3v.png
100 mVPP Supply Noise With Different Frequencies
Figure 49. AVDD Power Supply Rejection Ratio
AFE5808A Figure 52 Vcon_falling_step_response.png
LNA = 18 dB and PGA = 24 dB
Figure 51. VCNTL Response Time
AFE5808A Figure 54 pos_inp_wave_exp.png
Figure 53. Pulse Inversion Asymmetrical Positive Input
AFE5808A Figure 56 pulse_inversion.png
VIN = 2 VPP, PRF = 1 kHz, Gain = 21 dB
Figure 55. Pulse Inversion
AFE5808A Figure 58 100dB_overload_zoomed.png
VIN = 50 mVPP/100 µVPP, Max Gain
Figure 57. Overload Recovery Response vs INM Capacitor (Zoomed)