SNLS614B September   2018  – December 2022 DP83869HM

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (continued)
  6. Device Comparison Table
  7. Pin Configuration and Functions
  8. Specifications
    1. 8.1 Absolute Maximum Ratings
    2. 8.2 ESD Ratings
    3. 8.3 Recommended Operating Conditions
    4. 8.4 Thermal Information
    5. 8.5 Electrical Characteristics
    6. 8.6 Timing Requirements
    7. 8.7 Timing Diagrams
    8. 8.8 Typical Characteristics
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1  WoL (Wake-on-LAN) Packet Detection
        1. 9.3.1.1 Magic Packet Structure
        2. 9.3.1.2 Magic Packet Example
        3. 9.3.1.3 Wake-on-LAN Configuration and Status
      2. 9.3.2  Start of Frame Detect for IEEE 1588 Time Stamp
        1. 9.3.2.1 SFD Latency Variation and Determinism
          1. 9.3.2.1.1 1000-Mb SFD Variation in Master Mode
          2. 9.3.2.1.2 1000-Mb SFD Variation in Slave Mode
          3. 9.3.2.1.3 100-Mb SFD Variation
      3. 9.3.3  Clock Output
      4. 9.3.4  Loopback Mode
        1. 9.3.4.1 Near-End Loopback
          1. 9.3.4.1.1 MII Loopback
          2. 9.3.4.1.2 PCS Loopback
          3. 9.3.4.1.3 Digital Loopback
          4. 9.3.4.1.4 Analog Loopback
          5. 9.3.4.1.5 External Loopback
          6. 9.3.4.1.6 Far-End (Reverse) Loopback
        2.       39
      5. 9.3.5  BIST Configuration
      6. 9.3.6  Interrupt
      7. 9.3.7  Power-Saving Modes
        1. 9.3.7.1 IEEE Power Down
        2. 9.3.7.2 Active Sleep
        3. 9.3.7.3 Passive Sleep
      8. 9.3.8  Mirror Mode
      9. 9.3.9  Speed Optimization
      10. 9.3.10 Cable Diagnostics
        1. 9.3.10.1 TDR
      11. 9.3.11 Fast Link Drop
      12. 9.3.12 Jumbo Frames
    4. 9.4 Device Functional Modes
      1. 9.4.1  Copper Ethernet
        1. 9.4.1.1 1000BASE-T
        2. 9.4.1.2 100BASE-TX
        3. 9.4.1.3 10BASE-Te
      2. 9.4.2  Fiber Ethernet
        1. 9.4.2.1 1000BASE-X
        2. 9.4.2.2 100BASE-FX
      3. 9.4.3  Serial GMII (SGMII)
      4. 9.4.4  Reduced GMII (RGMII)
        1. 9.4.4.1 1000-Mbps Mode Operation
        2. 9.4.4.2 1000-Mbps Mode Timing
        3. 9.4.4.3 10- and 100-Mbps Mode
      5. 9.4.5  Media Independent Interface (MII)
      6. 9.4.6  Bridge Modes
        1. 9.4.6.1 RGMII-to-SGMII Mode
        2. 9.4.6.2 SGMII-to-RGMII Mode
        3.       69
      7. 9.4.7  Media Convertor Mode
      8. 9.4.8  Register Configuration for Operational Modes
        1. 9.4.8.1 RGMII-to-Copper Ethernet Mode
        2. 9.4.8.2 RGMII-to-1000Base-X Mode
        3. 9.4.8.3 RGMII-to-100Base-FX Mode
        4. 9.4.8.4 RGMII-to-SGMII Bridge Mode
        5. 9.4.8.5 1000M Media Convertor Mode
        6. 9.4.8.6 100M Media Convertor Mode
        7. 9.4.8.7 SGMII-to-Copper Ethernet Mode
      9. 9.4.9  Serial Management Interface
        1. 9.4.9.1 Extended Address Space Access
          1. 9.4.9.1.1 Write Address Operation
          2. 9.4.9.1.2 Read Address Operation
          3. 9.4.9.1.3 Write (No Post Increment) Operation
          4. 9.4.9.1.4 Read (No Post Increment) Operation
          5. 9.4.9.1.5 Write (Post Increment) Operation
          6. 9.4.9.1.6 Read (Post Increment) Operation
          7. 9.4.9.1.7 Example of Read Operation Using Indirect Register Access
          8. 9.4.9.1.8 Example of Write Operation Using Indirect Register Access
      10. 9.4.10 Auto-Negotiation
        1. 9.4.10.1 Speed and Duplex Selection - Priority Resolution
        2. 9.4.10.2 Master and Slave Resolution
        3. 9.4.10.3 Pause and Asymmetrical Pause Resolution
        4. 9.4.10.4 Next Page Support
        5. 9.4.10.5 Parallel Detection
        6. 9.4.10.6 Restart Auto-Negotiation
        7. 9.4.10.7 Enabling Auto-Negotiation Through Software
        8. 9.4.10.8 Auto-Negotiation Complete Time
        9. 9.4.10.9 Auto-MDIX Resolution
    5. 9.5 Programming
      1. 9.5.1 Strap Configuration
        1. 9.5.1.1 Straps for PHY Address
        2. 9.5.1.2 Strap for DP83869HM Functional Mode Selection
        3. 9.5.1.3 LED Default Configuration Based on Device Mode
        4. 9.5.1.4 Straps for RGMII/SGMII to Copper
        5. 9.5.1.5 Straps for RGMII to 1000Base-X
        6. 9.5.1.6 Straps for RGMII to 100Base-FX
        7. 9.5.1.7 Straps for Bridge Mode (SGMII-RGMII)
        8. 9.5.1.8 Straps for 100M Media Convertor
        9. 9.5.1.9 Straps for 1000M Media Convertor
      2. 9.5.2 LED Configuration
      3. 9.5.3 Reset Operation
        1. 9.5.3.1 Hardware Reset
        2. 9.5.3.2 IEEE Software Reset
        3. 9.5.3.3 Global Software Reset
        4. 9.5.3.4 Global Software Restart
    6. 9.6 Register Maps
      1. 9.6.1 DP83869 Registers
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Applications
      1. 10.2.1 Copper Ethernet Typical Application
        1. 10.2.1.1 Design Requirements
        2. 10.2.1.2 Detailed Design Procedure
          1. 10.2.1.2.1 Clock Input
            1. 10.2.1.2.1.1 Crystal Recommendations
            2. 10.2.1.2.1.2 External Clock Source Recommendation
          2. 10.2.1.2.2 Magnetics Requirements
            1. 10.2.1.2.2.1 Magnetics Connection
        3. 10.2.1.3 Application Curves
      2. 10.2.2 Fiber Ethernet Typical Ethernet
        1. 10.2.2.1 Design Requirements
        2. 10.2.2.2 Detailed Design Procedure
          1. 10.2.2.2.1 Transceiver Connections
        3. 10.2.2.3 Application Curves
  11. 11Power Supply Recommendations
    1. 11.1 Two-Supply Configuration
    2. 11.2 Three-Supply Configuration
  12. 12Layout
    1. 12.1 Layout Guidelines
      1. 12.1.1 Signal Traces
        1. 12.1.1.1 MAC Interface Layout Guidelines
          1. 12.1.1.1.1 SGMII Layout Guidelines
          2. 12.1.1.1.2 RGMII Layout Guidelines
        2. 12.1.1.2 MDI Layout Guidelines
      2. 12.1.2 Return Path
      3. 12.1.3 Transformer Layout
      4. 12.1.4 Metal Pour
      5. 12.1.5 PCB Layer Stacking
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Documentation Support
      1. 13.1.1 Related Documentation
    2. 13.2 Receiving Notification of Documentation Updates
    3. 13.3 Support Resources
    4. 13.4 Trademarks
    5. 13.5 Electrostatic Discharge Caution
    6. 13.6 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

1000-Mbps Mode Operation

All RGMII signals are positive logic. The 8-bit data is multiplexed by taking advantage of both clock edges. The lower 4 bits are latched on the positive clock edge and the upper 4 bits are latched on trailing clock edge. The control signals are multiplexed into a single clock cycle using the same technique.

To reduce power consumption of RGMII interface, (TX_EN - TX_ER) and (RX_DV - RX_ER) are encoded in a manner that minimizes transitions during normal network operation. TX_CTRL pin will denote TX_EN on rising edge of GTX_CLK and will denote a logic derivative of TX_EN and TX_ER on the falling edge of GTX_CLK. RX_CTRL will denote RX_DV on rising edge of RX_CLK and will denote a logic derivative of RX_DV and RX_ER on the falling edge of RX_CLK. The encoding for the TX_ER and RX_ER is given in Equation 1 and Equation 2:

Equation 1. TX_ER = GMII_TX_ER (XOR) GMII_TX_EN

where

  • GMII_TX_ER and GMII_TX_EN are logical equivalent signals in GMII standard.
Equation 2. RX_ER = GMII_RX_ER (XOR) GMII_RX_DV

where

  • GMII_RX_ER, and GMII_RX_DV are logical equivalent signals in GMII standard.

When receiving a valid frame with no error, RX_CTRL = True is generated as a logic high on the rising edge of RX_CLK and RX_CTRL = False is generated as a logic high at the falling edge of RX_CLK. When no frame is being received, RX_CTRL = False is generated as a logic low on the rising edge of RX_CLK and RX_CTRL = False is generated as a logic low on the falling edge of RX_CLK.

The TX_CTRL is treated in a similar manner. During normal frame transmission, the signal stays at a logic high for both edges of GTX_CLK and during the period between frames where no error is indicated, the signal stays low for both edges.