SNOSBH0D May   2000  – November 2015 LF156 , LF256 , LF356

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 AC Electrical Characteristics, TA = TJ = 25°C, VS = ±15 V
    6. 6.6 DC Electrical Characteristics, TA = TJ = 25°C, VS = ±15 V
    7. 6.7 DC Electrical Characteristics
    8. 6.8 Power Dissipation Ratings
    9. 6.9 Typical Characteristics
      1. 6.9.1 Typical DC Performance Characteristics
      2. 6.9.2 Typical AC Performance Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Large Differential Input Voltage
      2. 7.3.2 Large Common-Mode Input Voltage
    4. 7.4 Device Functional Modes
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curves
    3. 8.3 System Examples
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Printed-Circuit-Board Layout For High-Impedance Work
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Related Links
    2. 11.2 Community Resources
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)(1)(2)
MIN MAX UNIT
Supply voltage LF155x, LF256x, LF356B ±22 V
LF35x ±18
Differential input voltage LF15x, LF25x, LF356B ±40 V
LF35x ±30
Input voltage(2) LF15x, LF25x, LF356B ±20 V
LF35x ±16
Output short circuit duration Continuous
TJMAX LMC package LF15x 150 °C
LF25x, LF356B, LF35x 115
P package LF25x, LF356B, LF35x 100
D package LF25x, LF356B, LF35x 100
Soldering information
(lead temp.)     
TO-99 package Soldering (10 sec.) 300 °C
PDIP package Soldering (10 sec.) 260
SOIC package Vapor phase (60 sec.) LF25x, LF356B, LF35x 215
Infrared (15 sec.) LF25x, LF356B, LF35x 220
Storage temperature, Tstg −65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) If Military/Aerospace specified devices are required, contact the TI Sales Office/Distributors for availability and specifications.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)(2) ±1000 V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) 100 pF discharged through 1.5-kΩ resistor

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
Supply voltage, VS LF15x ±15 VS ±20 V
LF25x ±15 VS ±20
LF356B ±15 VS ±20
LF35x ±15
TA LF15x –55 TA 125 °C
LF25x –25 TA 85
LF356B 0 TA 70
LF35x 0 TA 70

6.4 Thermal Information

THERMAL METRIC(1) LF155, LF156, LF355, LF357 LF356 UNIT
P (PDIP) D (SOIC) LMC (TO-99) P (PDIP)
8 PINS 8 PINS 8 PINS 8 PINS
RθJA Junction-to-ambient thermal resistance 130 195 55.2 °C/W
Still Air 160
400 LF/Min Air Flow 65
RθJC(top) Junction-to-case (top) thermal resistance 23 44.5 °C/W
RθJB Junction-to-board thermal resistance 32.4 °C/W
ψJT Junction-to-top characterization parameter 21.7 °C/W
ψJB Junction-to-board characterization parameter 32.3 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 AC Electrical Characteristics, TA = TJ = 25°C, VS = ±15 V

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SR Slew Rate LF15x: AV = 1 LFx55 5 V/μs
LFx56, LF356B 7.5
LFx56, LF356B 12
LF357: AV = 5 LFx57 50
GBW Gain Bandwidth Product LFx55 2.5 MHz
LFx56, LF356B 5
LFx57 20
ts Settling Time to 0.01%(1) LFx55 4 μs
LFx56, LF356B 1.5
LFx57 1.5
en Equivalent Input Noise Voltage RS = 100 Ω f = 100 Hz LFx55 25 nV/√Hz
LFx56, LF356B 15
LFx57 15
f = 1000 Hz LFx55 20 nV/√Hz
LFx56, LF356B 12
LFx57 12
in Equivalent Input Current Noise f = 100 Hz LFx55 0.01 pA/√Hz
LFx56, LF356B
LFx57
f = 1000 Hz LFx55 0.01 pA/√Hz
LFx56, LF356B
LFx57
CIN Input Capacitance LFx55 3 pF
LFx56, LF356B
LFx57
(1) Settling time is defined here, for a unity gain inverter connection using 2-kΩ resistors for the LF15x. It is the time required for the error voltage (the voltage at the inverting input pin on the amplifier) to settle to within 0.01% of its final value from the time a 10-V step input is applied to the inverter. For the LF357, AV = −5, the feedback resistor from output to input is 2 kΩ and the output step is 10 V (See Settling Time Test Circuit).

6.6 DC Electrical Characteristics, TA = TJ = 25°C, VS = ±15 V

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Supply current LF155 2 4 mA
LF355 2 4
LFx56, LF356B 5 7
LF356 5 10
LF357 5 10

6.7 DC Electrical Characteristics

See (1)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VOS Input offset voltage RS = 50 Ω TA = 25°C LF15x, LF25x, LF356B 3 5 mV
LF35x 3 10
Over temperature LF15x 7
LF25x, LF356B 6.5
LF35x 13
ΔVOS/ΔT Average TC of input
offset voltage
RS = 50 Ω LF15x, LF25x, LF356B, LF35x 5 μV/°C
ΔTC/ΔVOS Change in average TC with VOS adjust RS = 50 Ω(3) LF15x, LF25x, LF356B, LF35x 0.5 μV/°C
per mV
IOS Input offset current TJ = 25°C(1) (4) LF15x, LF25x, LF356B 3 20 pA
LF35x 3 50
TJ ≤ THIGH LF15x 20 nA
LF25x, LF356B 1
LF35x 2
IB Input bias current TJ = 25°C(1) (4) LF15x, LF25x, LF356B 30 100 pA
LF35x 30 200
TJ ≤ THIGH LF15x 50 nA
LF25x, LF356B 5
LF35x 8
RIN Input resistance TJ = 25°C LF15x, LF25x, LF356B, LF35x 1012 Ω
AVOL Large signal voltage gain VS = ±15 V,
VO = ±10 V,
RL = 2 kΩ
TA = 25°C LF15x, LF25x, LF356B 50 200 V/mV
LF35x 25 200
Over temperature LF15x, LF25x, LF356B 25
LF35x 15
VO Output voltage swing VS = ±15 V, RL = 10 kΩ LF15x, LF25x, LF356B, LF35x ±12 ±13 V
VS = ±15 V, RL= 2 kΩ LF15x, LF25x, LF356B, LF35x ±10 ±12
VCM Input common-mode
voltage range
VS = ±15 V VCM, High LF15x, LF25x, LF356B 11 15.1 V
LF35x 10 15.1
VCM, Low LF15x, LF25x, LF356B −12 –11
LF35x −12 –10
CMRR Common-mode rejection ratio LF15x, LF25x, LF356B 85 100 dB
LF35x 80 100
PSRR Supply voltage rejection ratio(5) LF15x, LF25x, LF356B 85 100 dB
LF35x 80 100
(1) Unless otherwise stated, these test conditions apply:
LF15x LF25x LF356B LF35x
Supply Voltage, VS ±15 V ≤ VS ≤ ±20 V ±15 V ≤ VS ≤ ±20 V ±15 V ≤ VS ≤ ±20 V VS = ±15 V
TA −55°C ≤ TA ≤ +125°C −25°C ≤ TA ≤ +85°C 0°C ≤ TA ≤ +70°C 0°C ≤ TA ≤ +70°C
THIGH +125°C +85°C +70°C +70°C
and VOS, IB and IOS are measured at VCM = 0.
(2) Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.
(3) The Temperature Coefficient of the adjusted input offset voltage changes only a small amount (0.5 μV/°C typically) for each mV of adjustment from its original unadjusted value. Common-mode rejection and open-loop voltage gain are also unaffected by offset adjustment.
(4) The input bias currents are junction leakage currents which approximately double for every 10°C increase in the junction temperature, TJ. Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, Pd. TJ = TA + θJA Pd where θJA is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.
(5) Supply Voltage Rejection is measured for both supply magnitudes increasing or decreasing simultaneously, in accordance with common practice.

6.8 Power Dissipation Ratings

MIN MAX UNIT
Power Dissipation at
TA = 25°C (1) (2)
LMC Package (Still Air) LF15x 560 mW
LF25x, LF356B, LF35x 400
LMC Package
(400 LF/Min Air Flow)
LF15x 1200
LF25x, LF356B, LF35x 1000
P Package LF25x, LF356B, LF35x 670
D Package LF25x, LF356B, LF35x 380
(1) The maximum power dissipation for these devices must be derated at elevated temperatures and is dictated by TJMAX, θJA, and the ambient temperature, TA. The maximum available power dissipation at any temperature is PD = (TJMAX − TA) / θJA or the 25°C PdMAX, whichever is less.
(2) Maximum power dissipation is defined by the package characteristics. Operating the part near the maximum power dissipation may cause the part to operate outside specified limits.

6.9 Typical Characteristics

6.9.1 Typical DC Performance Characteristics

Curves are for LF155 and LF156 unless otherwise specified.
LF155 LF156 LF256 LF257 LF355 LF356 LF357 00564637.png Figure 1. Input Bias Current
LF155 LF156 LF256 LF257 LF355 LF356 LF357 00564639.png Figure 3. Input Bias Current
LF155 LF156 LF256 LF257 LF355 LF356 LF357 00564641.png Figure 5. Supply Current
LF155 LF156 LF256 LF257 LF355 LF356 LF357 00564643.png Figure 7. Negative Current Limit
LF155 LF156 LF256 LF257 LF355 LF356 LF357 00564645.png Figure 9. Positive Common-Mode Input Voltage Limit
LF155 LF156 LF256 LF257 LF355 LF356 LF357 00564647.png Figure 11. Open-Loop Voltage Gain
LF155 LF156 LF256 LF257 LF355 LF356 LF357 00564638.png Figure 2. Input Bias Current
LF155 LF156 LF256 LF257 LF355 LF356 LF357 00564640.png Figure 4. Voltage Swing
LF155 LF156 LF256 LF257 LF355 LF356 LF357 00564642.png Figure 6. Supply Current
LF155 LF156 LF256 LF257 LF355 LF356 LF357 00564644.png Figure 8. Positive Current Limit
LF155 LF156 LF256 LF257 LF355 LF356 LF357 00564646.png Figure 10. Negative Common-Mode Input Voltage Limit
LF155 LF156 LF256 LF257 LF355 LF356 LF357 00564648.png Figure 12. Output Voltage Swing

6.9.2 Typical AC Performance Characteristics

LF155 LF156 LF256 LF257 LF355 LF356 LF357 00564649.png Figure 13. Gain Bandwidth
LF155 LF156 LF256 LF257 LF355 LF356 LF357 00564651.png Figure 15. Normalized Slew Rate
LF155 LF156 LF256 LF257 LF355 LF356 LF357 00564653.png Figure 17. Output Impedance
LF155 LF156 LF256 LF257 LF355 LF356 LF357 00564606.png Figure 19. LF156 Small Signal Pulse Response, AV = +1
LF155 LF156 LF256 LF257 LF355 LF356 LF357 00564609.png
Figure 21. LF156 Large Signal Puls Response, AV = +1
LF155 LF156 LF256 LF257 LF355 LF356 LF357 00564656.png Figure 23. Inverter Settling Time
LF155 LF156 LF256 LF257 LF355 LF356 LF357 00564658.png Figure 25. Bode Plot
LF155 LF156 LF256 LF257 LF355 LF356 LF357 00564660.png Figure 27. Bode Plot
LF155 LF156 LF256 LF257 LF355 LF356 LF357 00564662.png Figure 29. Power Supply Rejection Ratio
LF155 LF156 LF256 LF257 LF355 LF356 LF357 00564664.png Figure 31. Undistorted Output Voltage Swing
LF155 LF156 LF256 LF257 LF355 LF356 LF357 00564666.png Figure 33. Equivalent Input Noise Voltage (Expanded Scale)
LF155 LF156 LF256 LF257 LF355 LF356 LF357 00564650.png Figure 14. Gain Bandwidth
LF155 LF156 LF256 LF257 LF355 LF356 LF357 00564652.png Figure 16. Output Impedance
LF155 LF156 LF256 LF257 LF355 LF356 LF357 00564605.png
Figure 18. LF155 Small Signal Pulse Response, AV = +1
LF155 LF156 LF256 LF257 LF355 LF356 LF357 00564608.png Figure 20. LF155 Large Signal Pulse Response, AV = +1
LF155 LF156 LF256 LF257 LF355 LF356 LF357 00564655.png Figure 22. Inverter Settling Time
LF155 LF156 LF256 LF257 LF355 LF356 LF357 00564657.png Figure 24. Open-Loop Frequency Response
LF155 LF156 LF256 LF257 LF355 LF356 LF357 00564659.png Figure 26. Bode Plot
LF155 LF156 LF256 LF257 LF355 LF356 LF357 00564661.png Figure 28. Common-Mode Rejection Ratio
LF155 LF156 LF256 LF257 LF355 LF356 LF357 00564663.png Figure 30. Power Supply Rejection Ratio
LF155 LF156 LF256 LF257 LF355 LF356 LF357 00564665.png Figure 32. Equivalent Input Noise Voltage