SNVSB42A December   2017  – December 2025 LM25576-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Resistance Characteristics
    5. 5.5 Electrical Characteristics
    6. 5.6 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 High Voltage Start-Up Regulator
    4. 6.4 Device Functional Modes
      1. 6.4.1 Shutdown and Stand-by Mode
      2. 6.4.2 Oscillator and Sync Capability
      3. 6.4.3 Error Amplifier and PWM Comparator
      4. 6.4.4 RAMP Generator
      5. 6.4.5 Maximum Duty Cycle and Input Drop-Out Voltage
      6. 6.4.6 Current Limit
      7. 6.4.7 Soft-Start
      8. 6.4.8 Boost Pin
      9. 6.4.9 Thermal Protection
  8. Application and Implementation
    1. 7.1 Application Information
      1. 7.1.1 Design Requirements
      2. 7.1.2 Detailed Design Procedure
        1. 7.1.2.1  R3 (RT)
        2. 7.1.2.2  Inductor (L1)
        3. 7.1.2.3  C3 (CRAMP)
        4. 7.1.2.4  C9, C10
        5. 7.1.2.5  D1
        6. 7.1.2.6  C1, C2
        7. 7.1.2.7  C8
        8. 7.1.2.8  C7
        9. 7.1.2.9  C4
        10. 7.1.2.10 R5, R6
        11. 7.1.2.11 R1, R2, C12
        12. 7.1.2.12 R7, C11
        13. 7.1.2.13 R4, C5, C6
      3. 7.1.3 Bias Power Dissipation Reduction
    2. 7.2 Typical Application
      1. 7.2.1 Typical Schematic for High Frequency (1MHz) Application
      2. 7.2.2 Typical Schematic for Buck and Boost (Inverting) Application
      3. 7.2.3 Application Curves
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
        1. 7.4.1.1 PCB Layout and Thermal Considerations
      2. 7.4.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 Device Support
      1. 8.1.1 Developmental Support
        1. 8.1.1.1 Custom Design With WEBENCH® Tools
    2. 8.2 Receiving Notification of Documentation Updates
    3. 8.3 Support Resources
    4. 8.4 Trademarks
    5. 8.5 Electrostatic Discharge Caution
    6. 8.6 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Power Supply Recommendations

Verify that the characteristics of the input supply are compatible with the specifications found in this data sheet. In addition, establish that the input supply is capable of delivering the required input current to the loaded regulator. Estimate the average input current using the following equation.

Equation 18. I I N = V O U T × I O U T η × V I N
  • η = efficiency

If the regulator connects to the input supply through long wires or PCB traces, special care is required to achieve good performance. The parasitic inductance and resistance of the input cables can have an adverse effect on the operation of the regulator. The parasitic inductance, in combination with the low-ESR, ceramic input capacitors, can form an under-damped resonant circuit, resulting in overvoltage transients at the input to the regulator. The parasitic resistance can cause the voltage at the VIN pin to dip whenever a load transient is applied to the output. If the application is operating close to the minimum input voltage, this dip can cause the regulator to momentarily shut down and reset. The best way to solve these kinds of issues is to limit the distance from the input supply to the regulator or plan to use an aluminum or tantalum input capacitor in parallel with the ceramics. The moderate ESR of these types of capacitors help dampen the input resonant circuit and reduce any overshoots. A value in the range of 20μF to 100μF is typically sufficient to provide input damping and help to hold the input voltage steady during large load transients.

Sometimes, for other system considerations, an input filter is used in front of the regulator. This action can lead to instability, as well as some of the effects mentioned above, unless designed carefully. The AN-2162 Simple Success With Conducted EMI From DC/DC Converters application note provides helpful suggestions when designing an input filter for any switching regulator. In some cases, a transient voltage suppressor (TVS) is used on the input of regulators. One class of this device has a snap-back characteristic (thyristor type). TI does not recommend the use of a device with this type of characteristic. When the TVS fires, the clamping voltage falls to a very low value. If this voltage is less than the output voltage of the regulator, the output capacitors discharge through the device back to the input. This uncontrolled current flow can damage the device.