SNVS113F December   1999  – May 2016 LM3411

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics: 3.3-V Version
    6. 6.6 Electrical Characteristics: 5-V Version
    7. 6.7 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagrams
    3. 8.3 Feature Description
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1  LM3411 Typical Application
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 Compensation
          2. 9.2.1.2.2 Test Circuit
        3. 9.2.1.3 Application Curves
      2. 9.2.2  Isolated 250-mA Flyback Switching Regulator
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
      3. 9.2.3  Isolated 1.5-A Flyback Switching Regulator
        1. 9.2.3.1 Design Requirements
        2. 9.2.3.2 Detailed Design Procedure
      4. 9.2.4  Precision 1-A Buck Regulator
        1. 9.2.4.1 Design Requirements
        2. 9.2.4.2 Detailed Design Procedure
      5. 9.2.5  Negative Input, Negative or Positive Output Flyback Regulator
        1. 9.2.5.1 Design Requirements
        2. 9.2.5.2 Detailed Design Procedure
      6. 9.2.6  Precision 5-V, 1-A Low Dropout Regulator
        1. 9.2.6.1 Design Requirements
        2. 9.2.6.2 Detailed Design Procedure
      7. 9.2.7  3.3-V, 0.5-A Low Dropout Regulator
        1. 9.2.7.1 Design Requirements
        2. 9.2.7.2 Detailed Design Procedure
      8. 9.2.8  Precision Positive Voltage Regulator With Accurate Current Limit
        1. 9.2.8.1 Design Requirements
        2. 9.2.8.2 Detailed Design Procedure
      9. 9.2.9  Precision Negative Voltage Regulator
        1. 9.2.9.1 Design Requirements
        2. 9.2.9.2 Detailed Design Procedure
      10. 9.2.10 4.7-V Power ON Detector With Hysteresis
        1. 9.2.10.1 Detailed Design Procedure
      11. 9.2.11 ±50-mV External Trim
        1. 9.2.11.1 Detailed Design Procedure
      12. 9.2.12 250-mA Shunt Regulator
        1. 9.2.12.1 Design Requirements
        2. 9.2.12.2 Detailed Design Procedure
      13. 9.2.13 Voltage Detector
        1. 9.2.13.1 Detailed Design Procedure
      14. 9.2.14 Overvoltage Crowbar
        1. 9.2.14.1 Detailed Design Procedure
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 Community Resources
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)(2)
MIN MAX UNIT
Input voltage, VIN 20 V
Output current 20 mA
Power dissipation (TA = 25°C)(3) 300 mW
Lead temperature Vapor phase (60 s) 215 °C
Infrared (15 s) 220
Junction temperature 150 °C
Storage temperature, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) See AN-450 Surface Mounting Methods and Their Effect on Product Reliability (SNOA742) for methods on soldering surface-mount devices.
(3) The maximum power dissipation must be derated at elevated temperatures and is dictated by TJmax (maximum junction temperature), RθJA (junction to ambient thermal resistance), and TA (ambient temperature). The maximum allowable power dissipation at any temperature is (PDmax = TJmax – TA) / RθJA or the number given in the Absolute Maximum Ratings, whichever is lower. The typical thermal resistance (RθJA) when soldered to a printed-circuit board is approximately 306°C/W for the DBV package.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±1500 V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1)
MIN NOM MAX UNIT
VI Input voltage LM3411x 3.3-V 3.3 V
LM3411x 5-V 5
IO Output current 0 15 mA
TA Ambient temperature –40 85 °C
TJ Operating junction temperature –40 125 °C
(1) The maximum power dissipation must be derated at elevated temperatures and is dictated by TJmax (maximum junction temperature), RθJA (junction to ambient thermal resistance), and TA (ambient temperature). The maximum allowable power dissipation at any temperature is (PDmax = TJmax − TA)/RθJA or the number given in the Absolute Maximum Ratings, whichever is lower. The typical thermal resistance (RθJA) when soldered to a printed-circuit board is approximately 306°C/W for the DBV package.

6.4 Thermal Information

THERMAL METRIC(1) LM3411 UNIT
DBV (SOT-23)
5 PINS
RθJA Junction-to-ambient thermal resistance 178.6 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 134.7 °C/W
RθJB Junction-to-board thermal resistance 37.3 °C/W
ψJT Junction-to-top characterization parameter 24.7 °C/W
ψJB Junction-to-board characterization parameter 36.8 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics: 3.3-V Version

Specifications are for TJ = 25°C, VIN = VREG, and VOUT = 1.5 V (unless otherwise noted).
PARAMETER TEST CONDITIONS  MIN(1) TYP(2)  MAX(1) UNIT
VREG Regulation voltage IOUT = 5 mA LM3411A 3.3-V TJ = 25°C 3.284 3.3 3.317 V
–40°C ≤ TJ ≤ 125°C 3.267 3.333
LM3411 3.3-V TJ = 25°C 3.267 3.3 3.333
–40°C ≤ TJ ≤ 125°C 3.234 3.366
Regulation voltage tolerance IOUT = 5 mA LM3411A 3.3-V TJ = 25°C ±0.5%
–40°C ≤ TJ ≤ 125°C ±1%
LM3411 3.3-V TJ = 25°C ±1%
–40°C ≤ TJ ≤ 125°C ±2%
Iq Quiescent current IOUT = 5 mA LM3411A 3.3-V TJ = 25°C 85 110 μA
–40°C ≤ TJ ≤ 125°C 115
LM3411 3.3-V TJ = 25°C 85 125
–40°C ≤ TJ ≤ 125°C 150
Gm Transconductance
ΔIOUT/ΔVREG
20 μA ≤ IOUT ≤ 1 mA LM3411A 3.3-V TJ = 25°C 1.5 3.3 mA/mV
–40°C ≤ TJ ≤ 125°C 0.75
LM3411 3.3-V TJ = 25°C 1 3.3
–40°C ≤ TJ ≤ 125°C 0.5
1 mA ≤ IOUT ≤ 15 mA LM3411A 3.3-V TJ = 25°C 3.3 6
–40°C ≤ TJ ≤ 125°C 2
LM3411 3.3-V TJ = 25°C 2.5 6
–40°C ≤ TJ ≤ 125°C 1.7
AV Voltage gain
ΔVOUT/ΔVREG
RL = 140 Ω(3) LM3411A 3.3-V TJ = 25°C,
1 V ≤ VOUT ≤ VREG – 1.2 V
550 1000 V/V
−40°C ≤ TJ ≤ 125°C,
1 V ≤ VOUT ≤ VREG – 1.3 V
250
LM3411 3.3-V TJ = 25°C,
1 V ≤ VOUT ≤ VREG – 1.2 V
450 1000
−40°C ≤ TJ ≤ 125°C,
1 V ≤ VOUT ≤ VREG – 1.3 V
200
RL = 2 kΩ LM3411A 3.3-V TJ = 25°C,
1 V ≤ VOUT ≤ VREG – 1.2 V
1500 3500
−40°C ≤ TJ ≤ 125°C,
1 V ≤ VOUT ≤ VREG – 1.3 V
900
LM3411 3.3-V TJ = 25°C,
1 V ≤ VOUT ≤ VREG – 1.2 V
1000 3500
−40°C ≤ TJ ≤ 125°C,
1 V ≤ VOUT ≤ VREG – 1.3 V
700
VSAT Output saturation(4)   VIN = VREG + 100 mV,
IOUT = 15 mA
LM3411A 3.3-V TJ = 25°C 1 1.2 V
–40°C ≤ TJ ≤ 125°C 1.3
LM3411 3.3-V TJ = 25°C 1 1.2
–40°C ≤ TJ ≤ 125°C 1.3
IL Output leakage current VIN = VREG – 100 mV,
VOUT = 0 V
LM3411A 3.3-V TJ = 25°C 0.1 0.5 μA
–40°C ≤ TJ ≤ 125°C 1
LM3411 3.3-V TJ = 25°C 0.1 0.5
–40°C ≤ TJ ≤ 125°C 1
Rf Internal feedback resistor LM3411A 3.3-V 39 52 65
LM3411 3.3-V 39 52 65
En Output noise voltage IOUT = 1 mA, 10 Hz ≤ f ≤ 10 kHz 50 μVRMS
(1) Limits are 100% production tested at 25°C. Limits over the operating temperature range are ensured through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate TIs Averaging Outgoing Level (AOQL).
(2) Typical numbers are at 25°C and represent the most likely parametric norm.
(3) Actual test is done using equivalent current sink instead of a resistor load.
(4) VSAT = VIN – VOUT, when the voltage at the IN pin is forced 100 mV above the nominal regulating voltage (VREG).

6.6 Electrical Characteristics: 5-V Version

Specifications are for TJ = 25°C, VIN = VREG, and VOUT = 1.5 V (unless otherwise noted).
PARAMETER TEST CONDITIONS MIN(1) TYP(2) MAX(1) UNIT
VREG Regulation voltage IOUT = 5 mA LM3411A 5-V TJ = 25°C 4.975 5 5.025 V
–40°C ≤ TJ ≤ 125°C 4.95 5.05
LM3411 5-V TJ = 25°C 4.95 5 5.05
–40°C ≤ TJ ≤ 125°C 4.9 5.1
Regulation voltage tolerance IOUT = 5 mA LM3411A 5-V TJ = 25°C ±0.5%
–40°C ≤ TJ ≤ 125°C ±1%
LM3411 5-V TJ = 25°C ±1%
–40°C ≤ TJ ≤ 125°C ±2%
Iq Quiescent current IOUT = 5 mA LM3411A 5-V TJ = 25°C 85 110 μA
–40°C ≤ TJ ≤ 125°C 115
LM3411 5-V TJ = 25°C 85 125
–40°C ≤ TJ ≤ 125°C 150
Gm Transconductance
ΔIOUT/ΔVREG
20 μA ≤ IOUT ≤ 1 mA LM3411A 5-V TJ = 25°C 1.5 3.3 mA/mV
–40°C ≤ TJ ≤ 125°C 0.75
LM3411 5-V TJ = 25°C 1 3.3
–40°C ≤ TJ ≤ 125°C 0.5
1 mA ≤ IOUT ≤ 15 mA LM3411A 5-V TJ = 25°C 3.3 6
–40°C ≤ TJ ≤ 125°C 2
LM3411 5-V TJ = 25°C 2.5 6
–40°C ≤ TJ ≤ 125°C 1.7
AV Voltage gain
ΔVOUT/ΔVREG
RL = 250 Ω(3) LM3411A 5-V TJ = 25°C,
1 V ≤ VOUT ≤ VREG – 1.2 V
750 1000 V/V
−40°C ≤ TJ ≤ 125°C,
1 V ≤ VOUT ≤ VREG – 1.3 V
350
LM3411 5-V TJ = 25°C,
1 V ≤ VOUT ≤ VREG – 1.2 V
650 1000
−40°C ≤ TJ ≤ 125°C,
1 V ≤ VOUT ≤ VREG – 1.3 V
300
RL = 2 kΩ LM3411A 5-V TJ = 25°C,
1 V ≤ VOUT ≤ VREG – 1.2 V
1500 3500
−40°C ≤ TJ ≤ 125°C,
1 V ≤ VOUT ≤ VREG – 1.3 V
900
LM3411 5-V TJ = 25°C,
1 V ≤ VOUT ≤ VREG – 1.2 V
1000 3500
−40°C ≤ TJ ≤ 125°C,
1 V ≤ VOUT ≤ VREG – 1.3 V
700
VSAT Output saturation(4)   VIN = VREG + 100 mV,
IOUT = 15 mA
LM3411A 5-V TJ = 25°C 1 1.2 V
–40°C ≤ TJ ≤ 125°C 1.3
LM3411 5-V TJ = 25°C 1 1.2
–40°C ≤ TJ ≤ 125°C 1.3
IL Output leakage current VIN = VREG – 100 mV,
VOUT = 0 V
LM3411A 5-V TJ = 25°C 0.1 0.5 μA
–40°C ≤ TJ ≤ 125°C 1
LM3411 5-V TJ = 25°C 0.1 0.5
–40°C ≤ TJ ≤ 125°C 1
Rf Internal feedback resistor LM3411A 5-V 70 94 118
LM3411 5-V 70 94 118
En Output noise voltage IOUT = 1 mA, 10 Hz ≤ f ≤ 10 kHz 80 μVRMS
(1) Limits are 100% production tested at 25°C. Limits over the operating temperature range are ensured through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate TIs Averaging Outgoing Level (AOQL).
(2) Typical numbers are at 25°C and represent the most likely parametric norm.
(3) Actual test is done using equivalent current sink instead of a resistor load.
(4) VSAT = VIN – VOUT, when the voltage at the IN pin is forced 100 mV above the nominal regulating voltage (VREG).

6.7 Typical Characteristics

LM3411 01198730.png Figure 1. Normalized Temperature Drift
LM3411 01198732.png Figure 3. Output Saturation Voltage, VSAT
LM3411 01198734.png Figure 5. Bode Plot
LM3411 01198735.png Figure 7. Response Time for 3.3-V Version (CC = 0 pF)
LM3411 01198737.png Figure 9. Response Time for 5-V Version (CC = 0 pF)
LM3411 01198739.png Figure 11. Tempco of Internal Feedback Resistor (Rf)
LM3411 01198741.png Figure 13. Regulation Voltage vs Output Voltage
and Load Resistance
LM3411 01198731.png Figure 2. Quiescent Current
LM3411 01198733.png Figure 4. Bode Plot
LM3411 01198744.png Figure 6. Bode Plot
LM3411 01198736.png Figure 8. Response Time for 3.3-V Version (CC = 10 nF)
LM3411 01198738.png Figure 10. Response Time for 5-V Version (CC = 10 nF)
LM3411 01198740.png Figure 12. Regulation Voltage Change vs Output Current
LM3411 01198742.png Figure 14. Regulation Voltage vs Output Voltage
and Load Resistance