SNVS294S November   2004  – May 2016 LM3671 , LM3671-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings: LM3671
    3. 6.3 ESD Ratings: LM3671-Q1
    4. 6.4 Recommended Operating Conditions
    5. 6.5 Thermal Information
    6. 6.6 Dissipation Ratings
    7. 6.7 Electrical Characteristics
    8. 6.8 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Circuit Operation
      2. 7.3.2 Soft Start
    4. 7.4 Device Functional Modes
      1. 7.4.1 PWM Operation
        1. 7.4.1.1 Internal Synchronous Rectification
        2. 7.4.1.2 Current Limiting
      2. 7.4.2 PFM Operation
      3. 7.4.3 Shutdown
      4. 7.4.4 Low Dropout Operation (LDO)
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Typical Application: Fixed-Voltage Version
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Inductor Selection
            1. 8.2.1.2.1.1 Method 1
            2. 8.2.1.2.1.2 Method 2
          2. 8.2.1.2.2 Input Capacitor Selection
          3. 8.2.1.2.3 Output Capacitor Selection
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Typical Application: ADJ Version
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
          1. 8.2.2.2.1 Output Voltage Selection for LM3671-ADJ
        3. 8.2.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
    3. 10.3 DSBGA Package Assembly and Use
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Related Links
    4. 11.4 Community Resources
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)(2)
MIN MAX UNIT
VIN pin: voltage to GND −0.2 6 V
FB, SW, EN pins GND − 0.2 VIN + 0.2 V
Continuous power dissipation(3) Internally Limited
Junction temperature, TJ-MAX 125 °C
Maximum lead temperature  (soldering, 10 sec.) 260 °C
Storage temperature, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) If Military/Aerospace specified devices are required, contact the Texas Instruments Sales Office / Distributors for availability and specifications.
(3) Internal thermal shutdown circuitry protects the device from permanent damage. Thermal shutdown engages at TJ= 150°C (typical) and disengages at TJ= 130°C (typical).

6.2 ESD Ratings: LM3671

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±500
Machine model 200
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 ESD Ratings: LM3671-Q1

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per AEC Q100-002(1) ±2000 V
Charged-device model (CDM), per AEC Q100-011 All pins except corner pins ±500
Corner pins (1, 3, 4, and 5): SOT-23 ±750
Corner pins (A1, A3, C1, and C3): DSBGA ±750
Machine model ±200
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.4 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1)(2)
MIN MAX UNIT
Input voltage(3) 2.7 5.5 V
Recommended load current 0 600 mA
Junction temperature, TJ –40 125 °C
Ambient temperature, TA(4) –40 85 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltages are with respect to the potential at the GND pin.
(3) The input voltage range recommended for ideal applications performance for the specified output voltages are given below: VIN = 2.7 V to 4.5 V for 1.1 V ≤ VOUT < 1.5 VIN = 2.7 V to 5.5 V for 1.5 V ≤ VOUT < 1.8 VIN = (VOUT + VDROPOUT) to 5.5 V for 1.8 V ≤ VOUT ≤ 3.3 V where VDROPOUT = ILOAD × (RDSON, PFET + RINDUCTOR).
(4) In applications where high power dissipation and/or poor package resistance is present, the maximum ambient temperature may have to be derated. Maximum ambient temperature (TA-MAX) is dependent on the maximum operating junction temperature (TJ-MAX), the maximum power dissipation of the device in the application (PD-MAX) and the junction to ambient thermal resistance of the package (RθJA) in the application, as given by the following equation: TA-MAX = TJ-MAX − (RθJA × PD-MAX). Refer to Dissipation Ratings for PD-MAX values at different ambient temperatures.

6.5 Thermal Information

THERMAL METRIC(1) LM3671 LM3671 and LM3671-Q1 UNIT
NKH (USON) DBV (SOT-23 ) YZR (DSBGA)
6 PINS 5 PINS 5 PINS
RθJA Junction-to-ambient thermal resistance 174.7 165.7 181.0 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 87.1 116.6 0.9 °C/W
RθJB Junction-to-board thermal resistance 109.0 26.8 110.3 °C/W
ψJT Junction-to-top characterization parameter 6.4 13.3 7.4 °C/W
ψJB Junction-to-board characterization parameter 109.0 26.3 110.3 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.6 Dissipation Ratings

RθJA TA≤ 25°C
POWER RATING
TA= 60°C
POWER RATING
TA= 85°C
POWER RATING
165.7°C/W (4 layer board) SOT-23 770 mW 500 mW 310 mW
181°C/W (4 layer board) 5-bump DSBGA 1179 mW 765 mW 470 mW
174.7°C/W (4 layer board) 6-pin USON 606 mW 394 mW 242 mW

6.7 Electrical Characteristics

Unless otherwise noted, limits apply for for TJ = 25°C, and specifications apply to the LM3671MF/TL/LC with VIN = EN = 3.6 V(1)(2)(3)
PARAMETER TEST CONDITION MIN TYP MAX UNIT
VIN Input voltage −40°C to 125°C, see(3) 2.7 5.5 V
VFB Feedback voltage (fixed) MF PWM mode(4), −40°C to 125°C −4% 4%
Feedback voltage (fixed) TL −2.5% 2.5%
Feedback voltage (fixed) LC −4% 4%
Feedback voltage (ADJ) MF(5) PWM mode(4), −40°C to 125°C −4% 4%
Feedback voltage (ADJ) TL −2.5 2.5
Line regulation 2.7 V ≤ VIN ≤ 5.5 V, IO = 10 mA 0.031 %/V
Load regulation 100 mA ≤ IO ≤ 600 mA, VIN = 3.6 V 0.0013 %/mA
VREF Internal reference voltage 0.5 V
ISHDN Shutdown supply current EN = 0 V 0.01 µA
EN = 0 V, −40°C to 125°C 1
IQ DC bias current into VIN No load, device is not switching (FB forced higher than programmed output voltage) 16 µA
No load, device is not switching (FB forced higher than programmed output voltage), −40°C to 125°C 35
RDSON (P) Pin-pin resistance for PFET VIN = VGS = 3.6 V 380 500
RDSON (N) Pin-pin resistance for NFET VIN = VGS= 3.6 V 250 400
ILIM Switch peak current limit Open loop(6) 1020 mA
Open loop(6), −40°C to 125°C 830 1150
VIH Logic high input −40°C to 125°C 1 V
VIL Logic low input −40°C to 125°C 0.4 V
IEN Enable (EN) input current 0.01 µA
−40°C to 125°C 1
ƒOSC Internal oscillator frequency PWM Mode(4) 2 MHz
PWM Mode(4), −40°C to 125°C 1.6 2.6
(1) Minimum (MIN) and maximum (MAX) limits are specified by design, test or statistical analysis. Typical (TYP) numbers are not specified, but do represent the most likely norm.
(2) The parameters in the electrical characteristic table are tested at VIN = 3.6 V unless otherwise specified. For performance over the input voltage range refer to datasheet curves.
(3) The input voltage range recommended for ideal applications performance for the specified output voltages are given below: VIN = 2.7 V to 4.5 V for 1.1 V ≤ VOUT < 1.5 VIN = 2.7 V to 5.5 V for 1.5 V ≤ VOUT < 1.8 VIN = (VOUT + VDROPOUT) to 5.5 V for 1.8 V ≤ VOUT ≤ 3.3 V where VDROPOUT = ILOAD × (RDSON, PFET + RINDUCTOR).
(4) Test condition: for VOUT less than 2.5 V, VIN = 3.6 V; for VOUT greater than or equal to 2.5 V, VIN = VOUT + 1 V.
(5) ADJ version is configured to 1.5 V output. For ADJ output version: VIN = 2.7 V to 4.5 V for 0.9 V ≤ VOUT < 1.1 VIN = 2.7 V to 5.5 V for 1.1 V ≤ VOUT < 3.3 V
(6) Refer to Typical Characteristics for closed-loop data and its variation with regards to supply voltage and temperature. Electrical Characteristics reflects open-loop data (FB = 0 V and current drawn from SW pin ramped up until cycle by cycle current limit is activated). Closed loop current limit is the peak inductor current measured in the application circuit by increasing output current until output voltage drops by 10%.

6.8 Typical Characteristics

LM3671MF/TL/LC, circuit of Figure 32, VIN = 3.6 V, VOUT = 1.5 V, TA = 25°C, unless otherwise noted.
LM3671 LM3671-Q1 20108404.gif Figure 1. Quiescent Supply Current vs Supply Voltage
LM3671 LM3671-Q1 20108440.png Figure 3. Feedback Bias Current vs Temperature
LM3671 LM3671-Q1 20108433.gif Figure 5. RDS(ON) vs. Temperature
LM3671 LM3671-Q1 20108429.gif
Figure 7. Output Voltage vs. Supply Voltage
LM3671 LM3671-Q1 20108406.gif
Figure 9. Output Voltage vs Temperature
LM3671 LM3671-Q1 20108407.gif
Figure 11. Output Voltage vs Output Current
LM3671 LM3671-Q1 20108408.gif
L = 2.2 µH
Figure 13. Efficiency vs Output Current
LM3671 LM3671-Q1 20108441.png
L = 2.2 µH
Figure 15. Efficiency vs Output Current
LM3671 LM3671-Q1 20108412.gif
Figure 17. Line Transient Response (PWM Mode)
LM3671 LM3671-Q1 20108413.png
Figure 19. Load Transient Response (PWM Mode)
LM3671 LM3671-Q1 20108414.png
PFM Mode 0.5 mA to 50 mA
Figure 21. Load Transient Response
LM3671 LM3671-Q1 20108452.png
PFM Mode 0.5 mA to 50 mA
Figure 23. Load Transient Response
LM3671 LM3671-Q1 20108454.png
Figure 25. PFM-to-PWM Mode Change by Load Transients
LM3671 LM3671-Q1 20108456.png
Figure 27. Start-Up into PWM Mode
LM3671 LM3671-Q1 20108405.gif Figure 2. Shutdown Current vs Temp
LM3671 LM3671-Q1 20108447.png Figure 4. Switching Frequency vs Temperature
LM3671 LM3671-Q1 20108448.png Figure 6. Open/Closed Loop Current Limit vs Temperature
LM3671 LM3671-Q1 20108458.png
Figure 8. Output Voltage vs Supply Voltage
LM3671 LM3671-Q1 20108459.png
Figure 10. Output Voltage vs Temperature
LM3671 LM3671-Q1 20108460.png
Figure 12. Output Voltage vs Output Current
LM3671 LM3671-Q1 20108409.gif
L = 2.2 µH
Figure 14. Efficiency vs Output Current
LM3671 LM3671-Q1 20108442.png
L = 2.2 µH
Figure 16. Efficiency vs Output Current
LM3671 LM3671-Q1 20108450.png
Figure 18. Line Transient Response (PWM Mode)
LM3671 LM3671-Q1 20108451.png
Figure 20. Load Transient Response (PWM Mode)
LM3671 LM3671-Q1 20108415.png
PFM Mode 0.5 mA to 50 mA
Figure 22. Load Transient Response
LM3671 LM3671-Q1 20108453.png
PFM Mode 50 mA to 0.5 mA
Figure 24. Load Transient Response
LM3671 LM3671-Q1 20108455.png
Figure 26. PWM-to-PFM Mode Change by Load Transients
LM3671 LM3671-Q1 20108457.png
Figure 28. Start-Up into PFM Mode