SNVS641L January   2010  – April 2019 LMZ10503

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Typical Application Circuit
      2.      Efficiency VOUT = 3.3 V
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Enable
      2. 7.3.2 Enable and UVLO
      3. 7.3.3 Soft-Start
      4. 7.3.4 Soft-Start Capacitor
      5. 7.3.5 Tracking
      6. 7.3.6 Tracking - Equal Soft-Start Time
      7. 7.3.7 Tracking - Equal Slew Rates
      8. 7.3.8 Current Limit
      9. 7.3.9 Overtemperature Protection
    4. 7.4 Device Functional Modes
      1. 7.4.1 Prebias Start-Up Capability
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Custom Design With WEBENCH® Tools
        2. 8.2.2.2 Input Capacitor Selection
        3. 8.2.2.3 Output Capacitor Selection
          1. 8.2.2.3.1 Output Voltage Setting
        4. 8.2.2.4 Loop Compensation
      3. 8.2.3 Application Curves
    3. 8.3 System Examples
      1. 8.3.1 Application Schematic for 3.3-V to 5-V Input and 2.5-V Output With Optimized Ripple and Transient Response
      2. 8.3.2 Application Schematic for 3.3-V to 5-V Input and 2.5-V Output
      3. 8.3.3 EMI Tested Schematic for 2.5-V Output Based on 3.3-V to 5-V Input
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Examples
    3. 10.3 Estimate Power Dissipation and Thermal Considerations
    4. 10.4 Power Module SMT Guidelines
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
      2. 11.1.2 Development Support
        1. 11.1.2.1 Custom Design With WEBENCH® Tools
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Receiving Notification of Documentation Updates
    4. 11.4 Community Resources
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Application Schematic for 3.3-V to 5-V Input and 2.5-V Output With Optimized Ripple and Transient Response

The compensation for each solution was optimized to work over the full input range. Many applications have a fixed input voltage rail. It is possible to modify the compensation to obtain a faster transient response for a given input voltage operating point.

LMZ10503 30111881.gifFigure 26. Optimized Schematic for 2.5-V Output Based on 3.3-V to 5-V Input

Table 5. Bill of Materials, VIN = 3.3 V to 5 V, VOUT = 2.5 V, IOUT (MAX) = 3 A, Optimized for Low Input and Output Ripple Voltage and Fast Transient Response

DESIGNATOR DESCRIPTION CASE SIZE MANUFACTURER MANUFACTURER P/N QTY.
U1 Power Module PFM-7 Texas Instruments LMZ10503 1
Cin1 22 µF, X5R, 10 V 1210 AVX 1210ZD226MAT 2
Cin2(1) 220 µF, 10 V, AL-Elec E Panasonic EEE1AA221AP 1
CO1(1) 4.7 µF, X5R, 10 V 0805 AVX 0805ZD475MAT 1
CO2(1) 22 µF, X5R, 6.3 V 1206 AVX 12066D226MAT 1
CO3 100 µF, X5R, 6.3 V 1812 AVX 18126D107MAT 1
Rfbt 75 kΩ 0402 Vishay Dale CRCW040275K0FKED 1
Rfbb 34.8 kΩ 0402 Vishay Dale CRCW040234K8FKED 1
Rcomp 1 kΩ 0402 Vishay Dale CRCW04021K00FKED 1
Ccomp 220 pF, ±5%, C0G, 50 V 0402 Murata GRM1555C1H221JA01D 1
CSS 10 nF, ±10%, X7R, 16 V 0402 Murata GRM155R71C103KA01 1
Optional components, include for low input and output voltage ripple.

Table 6. Output Voltage Setting (Rfbt = 75 kΩ)

VOUT Rfbb
3.3V 23.7 kΩ
2.5 V 34.8 kΩ
1.8 V 59 kΩ
1.5 V 84.5 kΩ
1.2 V 150 kΩ
0.9 V 590 kΩ