SNVS658I March   2011  – August 2015 LMZ22003

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Synchronization Input
      2. 7.3.2 Output Over-voltage Protection
      3. 7.3.3 Current Limit
      4. 7.3.4 Thermal Protection
      5. 7.3.5 Prebiased Start-Up
    4. 7.4 Device Functional Modes
      1. 7.4.1 Discontinuous Conduction and Continuous Conduction Modes
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Design Steps
        2. 8.2.2.2 Enable Divider, RENT, RENB and RENHSelection
        3. 8.2.2.3 Output Voltage Selection
        4. 8.2.2.4 Soft-Start Capacitor Selection
        5. 8.2.2.5 Tracking Supply Divider Option
        6. 8.2.2.6 CO Selection
        7. 8.2.2.7 CIN Selection
        8. 8.2.2.8 Discontinuous Conduction and Continuous Conduction Modes Selection
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Examples
    3. 10.3 Power Dissipation and Thermal Considerations
    4. 10.4 Power Module SMT Guidelines
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
      2. 11.1.2 Development Support
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Community Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

5 Pin Configuration and Functions

NDW Package
7-Pin
Top View
LMZ22003 30116802.gif

Pin Functions

PIN TYPE DESCRIPTION
NAME NO.
AGND 4 Ground Analog Ground — Reference point for all stated voltages. Must be externally connected to PGND (EP).
EN 3 Analog Enable — Input to the precision enable comparator. Rising threshold is 1.279 V typical. Once the module is enabled, a 21-µA source current is internally activated to facilitate programmable hysteresis.
FB 5 Analog Feedback — Internally connected to the regulation amplifier, overvoltage comparators. The regulation reference point is 0.796 V at this input pin. Connect the feedback resistor divider between the output and AGND to set the output voltage.
PGND Ground Exposed Pad / Power Ground Electrical path for the power circuits within the module. — NOT Internally connected to AGND / pin 4. Used to dissipate heat from the package during operation. Must be electrically connected to pin 4 external to the package.
SS/TRK 6 Analog Soft-Start/Track — To extend the 1.6-ms internal soft-start connect an external soft-start capacitor. For tracking connect to an external resistive divider connected to a higher priority supply rail. See Design Steps section
SYNC 2 Analog Sync Input — Apply a CMOS logic level square wave whose frequency is between 650 kHz and 950 kHz to synchronize the PWM operating frequency to an external frequency source. When not using synchronization connect to ground. The module free-running PWM frequency is 812 kHz (typical).
VIN 1 Power Supply input — Nominal operating range is 6 V to 20 V. A small amount of internal capacitance is contained within the package assembly. Additional external input capacitance is required between this pin and exposed pad (PGND).
VOUT 7 Power Output Voltage — Output from the internal inductor. Connect the output capacitor between this pin and exposed pad.