SDLS973 june   2023 LSF0101

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Revision History
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics
    6. 6.6  LSF0101 AC Performance (Translating Down) Switching Characteristics , VCCB = 3.3 V
    7. 6.7  LSF0101 AC Performance (Translating Down) Switching Characteristics, VCCB = 2.5 V
    8. 6.8  LSF0101 AC Performance (Translating Up) Switching Characteristics, VCCB = 3.3 V
    9. 6.9  LSF0101 AC Performance (Translating Up) Switching Characteristics, VCCB = 2.5 V
    10. 6.10 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Auto Bidirectional Voltage Translation
      2. 8.3.2 Output Enable
    4. 8.4 Device Functional Modes
      1. 8.4.1 Up and Down Translation
        1. 8.4.1.1 Up Translation
        2. 8.4.1.2 Down Translation
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Open-Drain Interface (I2C, PMBus, SMBus, and GPIO)
        1. 9.2.1.1 Design Requirements
          1. 9.2.1.1.1 Enable, Disable, and Reference Voltage Guidelines
          2. 9.2.1.1.2 Bias Circuitry
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 Bidirectional Translation
          2. 9.2.1.2.2 Pull-Up Resistor Sizing
          3. 9.2.1.2.3 Single Supply Translation
        3. 9.2.1.3 Application Curve
      2. 9.2.2 Voltage Translation for Vref_B < Vref_A + 0.8 V
  11. 10Power Supply Recommendations
  12. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  13. 12Device and Documentation Support
    1. 12.1 Related Documentation
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Support Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  14. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information
Bidirectional Translation

For the bidirectional translation configuration (higher voltage to lower voltage or lower voltage to higher voltage), the EN input must be connected to Vref_B and both pins must be pulled up to the HIGH side VCCB through a bias resistor (typically 200 kΩ). This allows Vref_B to regulate the EN input and bias the channels for proper translation. A filter capacitor on Vref_B is recommended for a stable supply at the device. The controller output driver can be push-pull or open-drain (pull-up resistors may be required) and the peripheral device output can be push-pull or open-drain (pull-up resistors are required to pull the Bn outputs to VPU).

Note: If either output is push-pull, data must be unidirectional or the outputs must be tri-state and be controlled by some direction-control mechanism to prevent HIGH-to-LOW bus contention in either direction. If both outputs are open-drain, no direction control is needed.