SBOS727B November   2015  – May 2016 OPA1622

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics:
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Power Dissipation
      2. 7.3.2 Thermal Shutdown
      3. 7.3.3 Enable Pin
      4. 7.3.4 Ground Pin
      5. 7.3.5 Electrical Overstress
      6. 7.3.6 Input Protection
    4. 7.4 Device Functional Modes
      1. 7.4.1 Shutdown Mode
      2. 7.4.2 Output Transients During Power Up and Power Down
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Noise Performance
        1. 8.1.1.1 Noise Calculations
        2. 8.1.1.2 Application Curve
        3. 8.1.1.3 Basic Noise Calculations
      2. 8.1.2 Total Harmonic Distortion Measurements
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Development Support
        1. 11.1.1.1 TINA-TI (Free Software Download)
        2. 11.1.1.2 TI Precision Designs
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Community Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Voltage Supply voltage, VS = (V+) – (V–) 40 V
Input voltage (signal inputs, enable, ground) (V–) – 0.5 (V+) + 0.5
Input differential voltage ±0.5
Current Input current (all pins except power-supply pins) ±10 mA
Output short-circuit(2) Continuous
Temperature Operating, TA –55 125 °C
Junction, TJ 200
Storage, Tstg –65 150
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) Short-circuit to VS / 2 (ground in symmetrical dual supply setups), one amplifier per package.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±4000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
Supply voltage, (V+) – (V–) Single-supply 4 36 V
Dual-supply ±2 ±18
Specified temperature –40 125 °C

6.4 Thermal Information

THERMAL METRIC(1) OPA1622 UNIT
DRC (SON)
10 PINS
RθJA Junction-to-ambient thermal resistance 47.6 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 58.1 °C/W
RθJB Junction-to-board thermal resistance 22.0 °C/W
ψJT Junction-to-top characterization parameter 0.9 °C/W
ψJB Junction-to-board characterization parameter 22.2 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 4.1 °C/W
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics:

at TA = +25°C, VS = ±2 V to ±18 V, VCM = VOUT = midsupply, and RL = 1 kΩ (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
AUDIO PERFORMANCE
THD+N Total harmonic distortion + noise G = 1, f = 1 kHz, VOUT = 3.5 VRMS, RL = 2 kΩ,
80-kHz measurement bandwidth
0.000024%
–132 dB
G = 1, f = 1 kHz, VOUT = 3.5 VRMS, RL = 600 Ω,
80-kHz measurement bandwidth
0.000025%
–132 dB
G = 1, f = 1 kHz, POUT = 10 mW, RL = 128 Ω,
80-kHz measurement bandwidth
0.000071%
–123 dB
G = 1, f = 1 kHz, POUT = 10 mW, RL = 32 Ω,
80-kHz measurement bandwidth
0.000149%
–116 dB
G = 1, f = 1 kHz, POUT = 10 mW, RL = 16 Ω,
80-kHz measurement bandwidth
0.000214%
–113 dB
IMD Intermodulation distortion SMPTE/DIN two-tone, 4:1 (60 Hz and 7 kHz),
G = 1, VO = 3 VRMS, RL = 2 kΩ, 90-kHz measurement bandwidth
0.000018%
–135 dB
CCIF twin-tone (19 kHz and 20 kHz), G = 1,
VO = 3 VRMS, RL = 2 kΩ, 90-kHz measurement bandwidth
0.00005%
–126 dB
FREQUENCY RESPONSE
GBW Gain-bandwidth product G = 1000 32 MHz
G = 1 8
SR Slew rate G = –1 10 V/μs
Full-power bandwidth(1) VO = 1 VP 1.6 MHz
Overload recovery time G = –10 300 ns
Channel separation (dual) f = 1 kHz 140 dB
NOISE
Input voltage noise f = 20 Hz to 20 kHz 2.1 μVPP
en Input voltage noise density(2) f = 10 Hz 10 nV/√Hz
f = 100 Hz 4
f = 1 kHz 2.8
In Input current noise density f = 10 Hz 2.5 pA/√Hz
f = 1 kHz 0.8
OFFSET VOLTAGE
VOS Input offset voltage ±100 ±500 μV
TA = –40°C to +125°C ±600
dVOS/dT Input offset voltage drift(2) TA = –40°C to +125°C 0.5 2.5 μV/°C
PSRR Power-supply rejection ratio 0.1 3 μV/V
INPUT BIAS CURRENT
IB Input bias current 1.2 2.0 μA
TA = –40°C to +125°C(2) 2.2
IOS Input offset current ±10 ±50 nA
TA = –40°C to +125°C(2) ±80
INPUT VOLTAGE RANGE
VCM Common-mode voltage range (V–) + 1.5 (V+) – 1 V
CMRR Common-mode rejection ratio (V–) + 1.5 V ≤ VCM ≤ (V+) – 1 V, TA = –40°C to +125°C 110 127 dB
INPUT IMPEDANCE
Differential 60k || 0.8 Ω || pF
Common-mode 500M || 0.9 Ω || pF
OPEN-LOOP GAIN
AOL Open-loop voltage gain (V–) + 2 V ≤ VO ≤ (V+) – 2 V, RL = 32 Ω, VS = ± 5 V 114 120 dB
(V–) + 1.5 V ≤ VO ≤ (V+) – 1.5 V, RL = 600 Ω, VS = ± 18 V 120 136
OUTPUT
VO Voltage output swing from rail Positive rail No load 800 mV
RL = 600 Ω 900
Negative rail No load 800
RL = 600 Ω 900
IOUT Output current See Figure 38 and Figure 39 mA
ZO Open-loop output impedance See Figure 40 Ω
ISC Short-circuit current VS = ±18 V +145 / –130 mA
CLOAD Capacitive load drive See Figure 24 pF
ENABLE PIN
VIH Logic high threshold 0.82 V
TA = –40°C to +125°C 0.95
VIL Logic low threshold 0.78 V
TA = –40°C to +125°C 0.65
IIH Input current VEN = 1.8 V 1.5 μA
POWER SUPPLY
IQ Quiescent current
(per channel)
VEN = 2.0 V, IOUT = 0 A 2.6 3.3 mA
TA = –40°C to +125°C(2) 4.2
VEN = 0 V, IOUT = 0 A 5 10 μA
(1) Full-power bandwidth = SR / (2π × VP), where SR = slew rate.
(2) Specified by design and characterization.

6.6 Typical Characteristics

at TA = 25°C, VS = ±18 V, and RL = 2 kΩ (unless otherwise noted)
OPA1622 C009_SBOS727.png
9250 channels
Figure 1. Input Offset Voltage Histogram
OPA1622 C008_SBOS727.png
4 typical units
Figure 3. Input Offset Voltage vs Temperature
OPA1622 C307_SBOS727.png
Figure 5. Input Voltage Noise Spectral Density vs Frequency
OPA1622 C103_SBOS727.png
Figure 7. 0.1-Hz to 10-Hz Noise
OPA1622 C303_SBOS727.png
Figure 9. Maximum Output Voltage vs Frequency
OPA1622 C001_600_SBOS727.png
600-Ω load
Figure 11. Open-Loop Gain vs Temperature
OPA1622 C106_SBOS727.png
Figure 13. Closed-Loop Gain vs Frequency
OPA1622 C108_SBOS727.png
10 mW, 80-kHz measurement bandwidth
Figure 15. THD+N Ratio vs Frequency
OPA1622 C110_SBOS727.png
1 kHz, 80-kHz measurement bandwidth
Figure 17. THD+N Ratio vs Output Amplitude
OPA1622 C112_SBOS727.png
Figure 19. Channel Separation vs Frequency
OPA1622 C012_SBOS727.png
Figure 21. PSRR vs Temperature
OPA1622 C011_SBOS727.png
Figure 23. CMRR vs Temperature
OPA1622 C117_SBOS727.png
G = 1, 10 mV
Figure 25. Small-Signal Step Response
OPA1622 C120_SBOS727.png
G = –10
Figure 27. Negative Overload Recovery
OPA1622 C119_SBOS727.png
Figure 29. No Phase Reversal
OPA1622 C305_SBOS727.png
Figure 31. IOS vs Temperature
OPA1622 C013_SBOS727_jc.png
VS = ±2 V
Figure 33. IB vs Common-Mode Voltage
OPA1622 C005_SB0S727.png
Figure 35. Quiescent Current vs Supply Voltage
OPA1622 C006_SBOS727.png
Figure 37. Short-Circuit Current vs Temperature
OPA1622 C007B_SB0S727.png
Figure 39. Negative Output Voltage vs Output Current
OPA1622 C010_SBOS727.png
50 channels
Figure 2. Input Offset Voltage Drift Histogram
OPA1622 C013_SBOS727.png
Figure 4. Input Offset Voltage vs Common-Mode Voltage
OPA1622 C306_SBOS727.png
Figure 6. Input Current Noise Spectral Density vs Frequency
OPA1622 C302_SBOS727.png
Figure 8. Voltage Noise vs Source Resistance
OPA1622 C101_SBOS727.png
Figure 10. Open-Loop Gain and Phase vs Frequency
OPA1622 C001_2k_SBOS727.png
2-kΩ load
Figure 12. Open-Loop Gain vs Temperature
OPA1622 C107_SBOS727.png
3.5 VRMS, 80-kHz measurement bandwidth
Figure 14. THD+N Ratio vs Frequency
OPA1622 C109_SBOS727.png
1 kHz, 80-kHz measurement bandwidth
Figure 16. THD+N Ratio vs Output Amplitude
OPA1622 C111_SBOS727.png
90-kHz measurement bandwidth
Figure 18. Intermodulation Distortion vs Output Amplitude
OPA1622 C115_SBOS727.png
Figure 20. PSRR vs Frequency (Referred to Input)
OPA1622 C116_SBOS727.png
Figure 22. CMRR vs Frequency (Referred to Input)
OPA1622 C308_SBOS727.png
Figure 24. Phase Margin vs Capacitive Load
OPA1622 C118_SBOS727.png
G = 1, 10 V
Figure 26. Large-Signal Step Response
OPA1622 C121_SBOS727.png
G = –10
Figure 28. Positive Overload Recovery
OPA1622 C304_SBOS727.png
Figure 30. IB vs Temperature
OPA1622 C014_SBOS727.png
VS = ±18 V
Figure 32. IB vs Common-Mode Voltage
OPA1622 C004_SBOS727.png
Figure 34. Quiescent Current vs Temperature
OPA1622 C309_SBOS727.png
Figure 36. Quiescent Current vs Enable Voltage
OPA1622 C007A_SB0S727.png
Figure 38. Positive Output Voltage vs Output Current
OPA1622 C301_SBOS727.png
Figure 40. Open-Loop Output Impedance vs Frequency